Seat							SF-6 Total No. of Pages	5 8 :3
No.							8	
		B.S	Sc. (Part-I	II) (Seme	ester	-VI) (CB	CS)	
			Examir	nation, Ma	arch	n - 2023		
			Μ	ATHEMA	ATI(CS		
			Linear	Algebra (Pap	er-XIV)		
			S	ub. Code :	8166	63		
Day and	Date	: Friday, 02 - 06 - 2023					Total Marks :	40
Time : 10	U.3U a	.m. to	o 12.30 p.m.					
Instructions :		 All questions are compulsory. Figures to the right indicate full mark 				narks		
		2) 3)	Use of non-p	rogrammable	calcul	ators is allowe	ed.	
Q1) Sel	ect th	e cori	rect alternativ	ve for each of	f the f	following.	[8]
a)	Let	<i>S</i> =	{(-1,0,1), (2,	,1,4)}. The	valu	e of k for	which the vect	or
	(3 <i>k</i>	+ 2,3	8,10) belongs	to the linear	span	of S is		
	i)	2		OV	ii)	-2		
	iii)	8		9	iv)	3		
b)	Wh	Which of the following is incorrect?						
	i)	A basis of a vector space is a maximal linearly independent set.						
	ii)	A minimal generating subset of a vector space V is a basis for V.						

- iii) Any two bases of a F.D.V.S. have same number of vectors
- iv) If dim V = n, then any n + 1 vectors in V are linearly independent.
- If $T: U \rightarrow V$ is a linear transformation such that dim U = 4 and nullity c) T=2 then rank of T is _____.
 - 1 2 i) ii)
 - iii) 0 iv) 4

SF-68

d) If
$$T: R^2 \rightarrow R^2$$
 and $S: R^2 \rightarrow R^3$ defined by $T(x, y) = (y, x)$ and $S(x, y) = (x+y, x-y, y)$ then $ST(x, y) =$ _____.
i) $(y + x, y - x, x)$ ii) $(x - y, x + y, x)$
iii) $(x - y, x + y, y)$ iv) $(y + 2x, y - x, x)$

- e) If V is an inner product space and $u, v \in V$ such that u is orthogonal to v then _____.
 - i) $||u + v||^2 = 0$ ii) $||u + v||^2 = ||u||^2 + ||v||^2$ iii) $||u + v||^2 \le ||u||^2 - ||v||^2$ iv) $||u + v||^2 \ge ||u||^2 + ||v||^2$
- f) If $\{w_1, w_2, \dots, w_n\}$ is an orthonormal set in an inner product space V, then

$$\sum_{i=1}^{n} \left| \left\langle w_{i}, v \right\rangle \right|^{2} \leq \left\| v \right\|^{2} \text{ for all } v \in V$$

This property is known as _____.

- i) Sylvester's law ii) Cauchy Schwarz inequality
- iii) Triangle inequality iv) Bessel's inequality
- - iii) 2 iv) 3

h) The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ is _____.

- i) $x^2 2x + 3$ ii) $x^2 + 3x 10$
- iii) $x^2 3x$ iv) $x^2 3x 10$

- **Q2**) Solve any two:
 - a) If V is a F.D.V.S. and $\{v_1, v_2, v_3, ..., v_r\}$ is a Linearly independent subset of V, then show that it can be extended to form a basis of V.
 - b) Let *V* be an inner product space. Then prove that $|(u,v)| \le ||u|| \cdot ||v||$ for all $u, v \in V$.
 - c) Let V and W be two vector spaces over F. Let $\{v_1, v_2, ..., v_n\}$ be a basis of V and $w_1, w_2, ..., w_n$ be any vectors in W. Then prove that there exists a unique linear transformation $T:V \rightarrow W$ such that $T(v_i) = w_i$, i = 1, 2, ..., n.

Q3) Solve any four:

- a) Determine whether or not $W = \{(a,b,c) \in \mathbb{R}^3 : b = a^2\}$ is a subspace of \mathbb{R}^3 .
- b) If $T : R^3 \rightarrow R^3$ is defined as T(x, y, z) = (x, x + y, x + y + z), then show that *T* is a linear transformation.
- c) If $T:V \rightarrow U$ is a linear transformation then prove that Ker $T = \{0\}$ if and only if *T* is one-one.
- d) Let V be an inner product space. Then prove that $||x + y|| \le ||x|| + ||y||$, for all $x, y \in V$.

e) Find eigen values of the matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
.

f) Let P_2 be the inner product space of polynomials of degree at most 2 with respect to the inner product defined as:

$$(p,q) = \int_{-1}^{1} p(x)q(x)dx \quad \forall p,q \in P_2$$

Show that p = x and $q = x^2$ are orthogonal in P_2 . Find $||p + q||^2$.

-3-

SF-68 [16]

[16]

SF – 96 Total No. of Pages : 3

Seat No.

> B.Sc. (Part - III) (Semester - VI) (CBCS) Examination, **March - 2023**

MATHEMATICS (Paper - XVI) **Discrete Mathematics** Sub. Code : 81665

Day and Date : Monday, 05 - 06 - 2023

Time : 10.30 a.m. to 12.30 p.m.

- **Instructions : 1**) All questions are compulsory.
 - 2) Figures to the right indicate full marks.

Q1) Select the correct alternative for each of the following : [8]

- If p & q are two statements then $q \rightarrow p$ is called _____ of $p \rightarrow q$. i)
 - a) inverse
 - b) converse
 - c) contrapositive
 - d) none of these

The binary addition $1101_2 + 1011_2 =$ _____. ii)

- a) 11010,
- 10110, b)
- 11000, c)
- 11001, d)

iii) Multi graph is a graph which contains _____.

- Parallel edges but no loops a)
- b) Loops but no parallel edges
- Parallel edges & loops c)
- No parallel edges & no loops d)

Total Marks : 40

- iv) The kind of inference $p \wedge q : q$ is called _____.
 - a) Generalization
 - b) Modus Tollens
 - c) Specialization
 - d) Contradiction Rule
- v) Every complete graph on 'n' vertices is an _____.
 - a) (n-1)-regular graph
 - b) n-regular graph
 - c) (n+1)-regular graph
 - d) $\frac{n}{2}$ -regular graph
- vi) The maximum degree of any vertex in a simple graph with n vertices is
 - a) n-1
 - b) n + 1
 - c) 2*n*−1
 - d) *n*
- vii) A vertex of degree one in any tree is called _____.
 - a) Internal Vertex
 - b) Leaf
 - c) Forest
 - d) Isolated Vertex

viii) Which of the following is not a proposition?

- a) Is mathematical boring?
- b) Man landed on the sun last year
- c) Diamond is harder than graphite
- d) He finished his work and went away

SF – 96

Q2) Attempt any two of the following :

- Define Converse and Inverse of conditional statement and write the a) converse and inverse of given statement 'If today is New Year's Eve, then tomorrow is January'.
- b) Define Degree of Vertex and show that number of odd degree vertices in any graph is always even.
- c) Define 'Tree' and prove that for any positive integer, if G is a Connected graph with *n* vertices and n - 1 edges, then G is a tree.

Q3) Attempt any four of the following :

- a) Assume x is real number and use De Morgan's laws to write the negation of -2 < x < 7.
- b) Prepare truth table for $(p \land q) \land \sim r$.
- c) Using truth table show that $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$.
- d) Evaluate
 - i)
 - $101001_2 + 10011_2 \\ 101101_2 10011_2$ ii)
- e) Check whether the following graphs are isomorphic or not.

Verify Handshaking Lemma for the following graph. f)

[16]