
Digital Principles

What Is a Digital Signal?
A digital signal refers to a type of signal that represents data as a sequence of discrete values. Unlike
analog signals, which are continuous and can represent a vast range of values, digital signals take on only
specific values. For instance, in digital electronics, these values are often represented as '0s' and '1s'.
This binary method is fundamental to computers, smartphones, and many other electronic devices you use
daily.

A signal in which the original information is converted into a string of bits before being transmitted. A
radio signal, for example, will be either on or off. Digital signals can be sent for long distances and suffer
less interference than analog signals.

The communications industry worldwide is in the midst of a switch to digital signals.

Sound and video can also be streamed via computer.

Sound storage in a compact disk is in digital form.

How Does a Digital Signal Work?
Digital signals function through the process of digital modulation. This can be understood by considering
how a digital watch displays time with numbers changing at a fixed rate. Here are some points to explain
further:

 Binary Codes: Digital signals use binary codes (0s and 1s) to represent information, which
makes them less susceptible to interference and noise compared to analog signals.

 Transmission: They are transmitted via a series of pulses, and each pulse represents a specific
value.

Why Are Digital Signals Important?
Digital signals are crucial for modern technology. Here’s why:

 Clarity: They maintain clarity over long distances, which is why your phone calls and TV
pictures are clear, even if transmitted across long distances.

 Storage: Digital format is easier to store and less prone to degradation over time compared to
analog signals.

 Processing: Digital data can be processed and manipulated more easily with computers,
supporting a wide range of applications from simple calculations to complex simulations.

Understanding digital signals helps us appreciate how data is handled and transmitted in various
electronic devices and communication systems.

Digital logic

What is Digital Logic?

Modern computing system consists of complex system and technologies. These technologies are
built upon some fundamental simple logics known as digital logic. By using digital logic gates
we can develop complex logical circuit for various purposes like data storing, data manipulation
or simply data representation.

What is Digital Logic?

One of the most important branch of Electronic and telecommunication Science sector is Digital
electronics (logic). Digital logic is mainly used for data(must be digital information)
representation, manipulation and processing of using discrete signals or binary digits (bits). It
can perform logical operations, data retrieval or storing and data transformation by analyzing
logical circuit design.

What is Digital?

Previously a continuous signal or values are used represent data which is known as Analog
signal. In modern computing sectors, data representation changes to discrete/non-continuous
signals or values (only 0 or 1) which are known as Digital. Here, the overall information is
encoded in a sequence of bits where every bits represents only two states(1 for high and 0 for
low) of the information. This is known as binary representation of information.

Why Digital Logic is Necessary?

In modern computing realm, Digital logic plays a significant role in many sectors which are
discussed below:

Universal Representation: For any type of data representation like image, text, video, audio etc.
digital logic/system is used by encoding the data in binary form. This binary formatted data
enables uniform handling of diverse data and allows seamless integration and compatibility.

Error Reduction and Correction: Digital logic itself is very less prone to error as it works with
only two values(0 and 1). Moreover, we can employ redundancy check and error detection
mechanisms by digital logic codes which can detect and rectify errors introduced during
transmission. This ensures reliable and accurate data processing.

Scalability and Modularity: Digital logic provides scalable framework by which we can
develop complex system by using basic logic gates only. This enables a easy and cost effective
way to develop a large-scale system with improved flexibility, maintainability, and ease of
integration.

Noise Immunity: As digital logic follows the discrete nature of signal so it is less prone to have
induced noise compared to analog signal. So it provides more robust communication and data
processing by noise filtering and error mitigation.

Digital Logic refers to the system of rules and processes that electronic devices use to
perform operations based on binary numbers (0s and 1s). It is the foundation of all digital
circuits, including computers, calculators, and microcontrollers.

Easy Explanation:

Think of digital logic as a set of simple rules that tell a device how to process information using
only two states:

0 (OFF or LOW voltage)

1 (ON or HIGH voltage)

These rules are implemented using logic gates, which are small circuits that take one or more
inputs and produce an output based on logical operations

Example:

A light switch can be thought of as a basic digital logic system:

Switch OFF (0) → Light is OFF

Switch ON (1) → Light is ON

In digital electronics, we use logic gates like AND, OR, and NOT to process inputs and make
decisions.

For example, an AND Gate works like this:

If both inputs are 1 (ON) → Output is 1 (ON)

If any input is 0 (OFF) → Output is 0 (OFF)

AND Gate Example:

Imagine a security system that only opens a door if both the fingerprint and the password are
correct (both are 1). If one of them is wrong (0), the door remains locked.

Boolean laws and theorems

Laws for Boolean algebra

The basic laws of the Boolean Algebra are added in the table added below,

Law OR form AND form

Identity Law P + 0 = P P.1 = P

Idempotent Law P + P = P P.P = P

Commutative Law P + Q = Q + P P.Q = Q.P

Associative Law P + (Q + R) = (P + Q) + R P.(Q.R) = (P.Q).R

Distributive Law P + QR = (P + Q).(P + R) P.(Q + R) = P.Q + P.R

Inversion Law (A’)’ = A (A’)’ = A

De Morgan’s Law (P + Q)’ = (P)’.(Q)’ (P.Q)’ = (P)’ + (Q)’

Boolean algebra is a branch of mathematics that deals with binary values (0 and 1) and logical
operations. It is widely used in digital circuits and computer science.

Basic Boolean Laws and Theorems with Examples

1. Identity Law-
In the Boolean algebra, we have identity elements for both AND (.) and OR (+)
operations. The identity law state that in Boolean algebra we have such variables that
on operating with AND and OR operation we get the same result, i.e.

A + 0 = A (0 is the identity for OR)

A · 1 = A (1 is the identity for AND)

🔹 Example:

If A = 1, then

1 + 0 = 1

1 · 1 = 1

If A = 0, then

0 + 0 = 0

0 · 1 = 0

2. Null Law (Dominance Law)

A + 1 = 1

A · 0 = 0

🔹 Example:

If A = 0, then

0 + 1 = 1

0 · 0 = 0

If A = 1, then

1 + 1 = 1

1 · 0 = 0

3. Idempotent Law

A + A = A

A · A = A

🔹 Example:

If A = 1, then

1 + 1 = 1

1 · 1 = 1

If A = 0, then

0 + 0 = 0

0 · 0 = 0

4. Complement Law

A + A' = 1 (A' means NOT A)

A · A' = 0

🔹 Example:

If A = 1, then A' = 0

1 + 0 = 1

1 · 0 = 0

If A = 0, then A' = 1

0 + 1 = 1

0 · 1 = 0

5. Double Negation Law or Inversion Law-

Inversion law is the unique law of Boolean algebra this law states that, the complement of the
complement of any number is the number itself.

(A')' = A

🔹 Example:

If A = 1, then

(1')' = 1

If A = 0, then

(0')' = 0

6. Commutative Law-

Binary variables in Boolean algebra follow the commutative law. This law states that operating
Boolean variables A and B is similar to operating Boolean variables B and A. That is,

A + B = B + A

A · B = B · A

🔹 Example:

If A = 1, B = 0, then

1 + 0 = 0 + 1 = 1

1 · 0 = 0 · 1 = 0

7. Associative Law-

Associative law state that the order of performing Boolean operator is illogical as their result is
always the same. This can be understood as,

(A + B) + C = A + (B + C)

(A · B) · C = A · (B · C)

🔹 Example:

If A = 1, B = 0, C = 1, then

(1 + 0) + 1 = 1 + (0 + 1) = 1

(1 · 0) · 1 = 1 · (0 · 1) = 0

8. Distributive Law-

Boolean Variables also follow the distributive law and the expression for Distributive law is
given as:

A · (B + C) = (A · B) + (A · C)

A + (B · C) = (A + B) · (A + C)

🔹 Example:

If A = 1, B = 0, C = 1, then

1 · (0 + 1) = (1 · 0) + (1 · 1) = 0 + 1 = 1

1 + (0 · 1) = (1 + 0) · (1 + 1) = 1 · 1 = 1

9. Absorption Law

A + (A · B) = A

A · (A + B) = A

🔹 Example:

If A = 1, B = 0, then

1 + (1 · 0) = 1 + 0 = 1

1 · (1 + 0) = 1 · 1 = 1

10. De Morgan’s Theorems

De Morgan’s Laws are also called De morgan’s Theorem. They are the most important laws in

Boolean Algebra and these are added below under the heading Boolean Algebra Theorem

Boolean Algebra Theorems

There are two basic theorems of great importance in Boolean Algebra, which are De Morgan’s

First Laws, and De Morgan’s Second Laws. These are also called De Morgan’s Theorems. Now

let’s learn about both in detail.

1.De Morgan’s First laws

De Morgan’s Law states that the complement of the product (AND) of two Boolean variables (or
expressions) is equal to the sum (OR) of the complement of each Boolean variable (or
expression).

 (P.Q)’ = (P)’ + (Q)’

The truth table for the same is given below:

P Q (P)’ (Q)’ (P.Q)’ (P)’ + (Q)’

T T F F F F

T F F T T T

F T T F T T

F F T T T T

We can clearly see that truth values for (P.Q)’ are equal to truth values for (P)’ + (Q)’,

corresponding to the same input. Thus, De Morgan’s First Law is true.

De Morgan’s Second laws

Statement: The Complement of the sum (OR) of two Boolean variables (or expressions) is equal
to the product(AND) of the complement of each Boolean variable (or expression).

(P + Q)’ = (P)’.(Q)’

Proof:

The truth table for the same is given below:

P Q (P)’ (Q)’ (P + Q)’ (P)’.(Q)’

T T F F F F

T F F T F F

F T T F F F

F F T T T T

We can clearly see that truth values for (P + Q)’ are equal to truth values for (P)’.(Q)’,

corresponding to the same input. Thus, De Morgan’s Second Law is true.

(A · B)' = A' + B'

(A + B)' = A' · B'

🔹 Example:

If A = 1, B = 0, then

(1 · 0)' = 1' + 0' = 0 + 1 = 1

(1 + 0)' = 1' · 0' = 0 · 1 = 0

Introduction of K-Map (Karnaugh Map)

In numerous digital circuits and other practical problems, finding expressions that have
minimum variables becomes a prerequisite. In such cases, minimisation of Boolean expressions
is possible that have 3, 4 variables. It can be done using the Karnaugh map without using any
theorems of Boolean algebra. The K-map can easily take two forms, namely, Sum of Product or
SOP and Product of Sum or POS, according to what we need in the problem. K-map is a
representation that is table-like, but it gives more data than the TRUTH TABLE. Fill a grid of K-
map with 1s and 0s, then solve it by creating various groups.

A Karnaugh Map (K-Map) is a simple way to simplify Boolean algebra expressions. It helps
reduce logic circuits, making them more efficient.

How It Works:

Grid Representation: A K-Map is a grid that represents all possible values of a Boolean
function.

Placing Values: The values in the grid come from a truth table (0s and 1s).

Grouping 1s: You group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.).

Simplifying Expression: Each group represents a simplified Boolean expression.

Solving an Expression Using K-Map

Here are the steps that are used to solve an expression using the K-map method:

1. Select a K-map according to the total number of variables.

2. Identify maxterms or minterms as given in the problem.

3. For SOP, put the 1’s in the blocks of the K-map with respect to the minterms (elsewhere 0’s).

4. For POS, putting 0’s in the blocks of the K-map with respect to the maxterms (elsewhere 1’s).

5. Making rectangular groups that contain the total terms in the power of two, such as 2,4,8
..(Except 1) and trying to cover as many numbers of elements as we can in a single group.

6. From the groups that have been created in step 5, find the product terms and then sum them up
for the SOP form.

Working Principle of K-Map

We know that there are mainly two forms in which logical expressions can be represented
namely:

 Sum-of-products form (SOP)
 Product-of-sums form (POS)

Advantages of K-Map

 Simplifies Boolean expressions – Reduces complex logic circuits easily.

 Visual Representation – Makes it easier to find patterns compared to algebraic
simplification.

 Faster than Boolean algebra – Reduces manual calculation efforts.
 Reduces logic gates – Leads to cost-effective and efficient digital circuits.

Disadvantages of K-Map

 Limited to small variables – Becomes difficult for more than 5-6 variables.
 Manual Errors Possible – Mistakes in grouping may lead to incorrect expressions.
 Not Practical for Computer-Based Design

Truth Tables for Karnaugh Map (K-Map)

A truth table represents all possible input combinations and their corresponding output values in
a Boolean function. The Karnaugh Map (K-Map) organizes these values into a structured grid,
making it easier to simplify the function.

2 Variable K-Map
2 variables have 2n = 22 = 4 minterms. Therefore there are 4 cells (squares) in 2 variable K-map for each
minterm.

Consider variable A & B as two variables. The rows of the columns will be represented by variable B.
The square facing the combination of the variable represents that min term as shown in fig below.

Grouping in 2 variables K-map is easy as there are few squares.

1. Truth Table for 2-Variable K-Map

For a function F(A, B):

A B F(A,B)

0 0 X

0 1 X

1 0 X

1 1 X

2-Variable K-Map Layout:

A \ B 0 1

0 X X

1 X X

Example of 2 Variable K-Map
Function F (A, B)

https://www.electricaltechnology.org/wp-content/uploads/2018/04/2-Variable-K-map-Karnaugh-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/2-Variable-K-map-Karnaugh-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Grouping-in-2-variables-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/2-Variable-K-map-Karnaugh-map.png

F = ∑ (m0, m1, m2) = A̅B̅ +A̅B +AB̅

K-map from Truth table

 We made 2 groups of 1’s. each group contains 2 minterms.
 In the first group, variable A is changing & B remains unchanged. So the first term of the

output expression will be B̅ (because B = 0 in this group).
 In the 2nd group, Variable B is changing and variable A remains unchanged. So the

second term will be of the output expression will be A̅ (because A=0 in this group).
 Now the simplifies expression will be the sum of these two terms as given below,

3 Variable K-Map
3 variables make 2n=23=8 min terms, so the Karnaugh map of 3 variables will have 8 squares(cells) as
shown in the figure given below.

https://www.electricaltechnology.org/wp-content/uploads/2018/04/Grouping-in-2-variables-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Grouping-in-2-variables-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/K-map-from-Truth-table.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/K-map-from-Truth-table.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Karnaugh-map-of-3-variables.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Karnaugh-map-of-3-variables.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Grouping-in-2-variables-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/K-map-from-Truth-table.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Karnaugh-map-of-3-variables.png

3 variable K-map can be in both forms. Note the combination of two variables in either
form is written in Gray code. So the min terms will not be in a decimal order.

The uppermost & lowermost cells are adjacent in the first form of K-map, the leftmost
and rightmost cells are also adjacent in the second form of K-map. So they can be made
into groups.

Some examples of grouping:

You can make groups of 2, 4 & 8 cells having same 1s or 0s.

Notice the groups of the uppermost & lowermost cells. They are adjacent as there is only one-bit
difference. That is why they can be grouped together. Don’t make unnecessary groups. All 1s or

0s should be grouped, not all possible groups of 1s or 0s should be made.

Truth Table for 3-Variable K-Map

For a function F(A, B, C):

A B C F(A,B,C)

0 0 0 X

0 0 1 X

0 1 0 X

0 1 1 X

1 0 0 X

1 0 1 X

1 1 0 X

1 1 1 X

https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-of-2-4-8-cells-having-1s-or-0s.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-of-2-4-8-cells-having-1s-or-0s.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-of-2-4-8-cells-having-1s-or-0s.png

3-Variable K-Map Layout:

AB \ C 0 1

00 X X

01 X X

11 X X

10 X X

Example of 3 Variable K-Map

F (A,B,C) = ∑ (m0, m1, m2, m4, m5, m6)

This example shows that you can make the groups overlap each other to make them as large as possible
and cover all the 1s.

https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-Table.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-Table.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-group-2-example.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-Table.png

In this first group (m0, m2, m6, m4), A &B are changing so we will eliminate it. However, C
remains unchanged in this group. So the term this group produce will be C̅ (because C=0 in this
group).

In the 2nd group (m0,m1,m4,m5), A and C are changing so it will be eliminated from the term.
However, B remains unchanged in this group. So the term this group produce will be B̅ (because
B=0 in this group).

https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-group-2-example.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-group-2-example.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-example-of-grouping-of-2.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-example-of-grouping-of-2.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-group-2-example.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-example-of-grouping-of-2.png

The sum of these two terms will make the simplified expression of the function as given below.

F = B̅ + C̅

Another example of grouping of 2 is given below. It shows how the corner min terms are
grouped.
In the first group (m0,m4), A is changing. B & C remains unchanged. So the term will be B̅C̅
(B=0,C=0 in this group).

In 2nd group (m3,m7), A is changing. B & C remains unchanged. BC will be the term because
B=1,C=1 in this group.

So This K-map leads to the expression

F = B̅C̅ + BC

These two examples show that a group of 4 cells give a term of 1 literal and a group of 2 cells
gives a term of 2 literals and a group of 1 cell gives a term of 3 literals. So the larger the
group,the smaller and simple the term gets.

4-variable K-Map

4 variables have 2n=24=16 minterms. So a 4-variable k-map will have 16 cells as shown in the figure
given below.

Each cell (min term) represent the variables in front of the corresponding row & column.

Truth Table for 4-Variable K-Map

For a function F (A, B, C, D):

A B C D F(A,B,C,D)

https://www.electricaltechnology.org/wp-content/uploads/2018/04/4-variable-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/4-variable-K-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/4-variable-K-map.png

A B C D F(A,B,C,D)

0 0 0 0 X

0 0 0 1 X

0 0 1 0 X

0 0 1 1 X

0 1 0 0 X

0 1 0 1 X

0 1 1 0 X

0 1 1 1 X

1 0 0 0 X

1 0 0 1 X

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

4-Variable K-Map Layout:

AB \ CD 00 01 11 10

00 X X X X

01 X X X X

11 X X X X

10 X X X X

How to Use a Truth Table in K-Map?

1. Write the truth table with all possible input values.
2. Transfer 1s (or 0s for POS) to the K-Map in their respective positions.
3. Group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.).
4. Derive a simplified Boolean expression from the groups.

K-Map Simplification

Karnaugh Map (K-Map) simplification is a method used to minimize Boolean expressions,
reducing the number of logic gates in a circuit. It works by grouping 1s (or 0s for POS) in the K-
Map and forming a simplified Boolean equation.

Steps for K-Map Simplification

1. Create a Truth Table – Identify the Boolean function values for all input combinations.
2. Fill the K-Map – Transfer the 1s (for SOP) or 0s (for POS) from the truth table into the

K-Map.
3. Group the 1s (or 0s) – Combine adjacent 1s in powers of 2 (1, 2, 4, 8, etc.).
4. Write the Simplified Expression – Derive the Boolean equation based on the groups.

Example: 2-Variable K-Map Simplification

Consider the function:
F(A, B) = Σ(1, 3) → (minterms 1 and 3 are 1s in the K-Map)

Step 1: Truth Table

A B F(A, B)

0 0 0

0 1 1

1 0 0

1 1 1

Step 2: K-Map Representation

A \ B 0 1

0 0 1

1 0 1

Step 3: Grouping

 The two 1s (minterms 1 and 3) are in the same column.
 Since B = 1 in both cases, the simplified function is:

F(A, B) = B

Example: 3-Variable K-Map Simplification

Consider F(A, B, C) = Σ(1, 3, 5, 7).

Step 1: Truth Table

A B C F(A, B, C)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Step 2: K-Map Representation

AB \ C 0 1

00 0 1

01 0 1

11 0 1

10 0 1

Step 3: Grouping

 The four 1s are all in column C = 1.
 Since all A, B combinations have C = 1, the simplified function is:

F(A, B, C) = C

Example: 4-Variable K-Map Simplification

For F(A, B, C, D) = Σ(0, 2, 8, 10, 5, 7, 13, 15).

Step 1: Truth Table

A B C D F(A, B, C, D)

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

Step 2: K-Map Representation

AB \ CD 00 01 11 10

00 1 0 0 1

AB \ CD 00 01 11 10

01 0 1 1 0

11 0 1 1 0

10 1 0 0 1

Step 3: Grouping

 Four 1s form a large group in CD = 00 or 10.
 Another group is in CD = 01 or 11.
 The simplified function:

F(A, B, C, D) = A’C’ + BD

Conclusion

 2-variable K-Maps simplify to a single variable term.
 3-variable K-Maps can simplify to expressions like A, B, or C.
 4-variable K-Maps form more complex groups but still result in simpler expressions.

Don't Care Condition

A don't care condition refers to a scenario in which the output of a function is not relevant for
certain input combinations. This means we can assign either 0 or 1 to these conditions to
simplify Boolean expressions or logic circuits.

Why Do We Use Don't Care Conditions?

1. Unused Input Combinations: Some input combinations may never occur in a system, so we
don't care about their output.

2. Simplification of Boolean Expressions: It helps in reducing the complexity of logic circuits.
3. Efficient Circuit Design: It allows us to minimize the number of gates used.

Example 1: Digital Circuit Design (Truth Table)

Consider a 3-bit binary code (000 to 111). If we are designing a BCD (Binary-Coded Decimal)
system, we only use 0000 to 1001 (0 to 9), while the remaining inputs (1010 to 1111) are
invalid.

A B C Output (F)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

Here, X represents don't care conditions, meaning we can assign either 0 or 1 to simplify the
logic circuit.

Example 2: Karnaugh Map (K-Map) Simplification

Suppose we have the function:

F(A, B, C) = Σ(0, 1, 4, 5) (minterms where F = 1)
Don't Care Conditions: d(A, B, C) = Σ(6, 7) (minterms that we don’t care about)

By treating don't care conditions as either 0 or 1; we can group them to form larger
simplifications in K-Map.

Key Takeaways

 Don't care conditions help reduce circuit complexity.
 They are represented as X in truth tables and K-Maps.
 They can be assigned either 0 or 1 to achieve the simplest expression.
 Commonly used in BCD systems, memory design, and logic circuit simplification.

Advantages of Using Don't Care Conditions

1. simplifies Boolean expressions.
2. Reduces the number of logic gates.
3. Minimizes hardware cost.
4. Enhances performance by reducing delay.

Real-Life Applications of Don't Care Conditions

BCD to 7-Segment Display: Certain numbers (10–15 in BCD) are unused, so they are marked
as don't care.

Memory Addressing: Some addresses are never used, and their values can be don't care to
optimize circuits.

State Machines (FSMs): Unreachable states in a state diagram are treated as don’t care to
minimize logic design.

Multiplexers & Decoders: Some select lines might never be active, so their input values can be
don't care.

Points-

 Don’t care conditions help simplify logic circuits.
 Represented as X in truth tables and K-Maps.
 Used in BCD systems, memory addressing, FSMs, and multiplexers.
 They allow flexible assignment (0 or 1) for better optimization.
 The major difference between SOP and POS is that the SOP represents a Boolean expression

through minterms, while POS defines a Boolean expression through max terms.

 What is SOP?

 SOP stands for Sum of Product. SOP form is a set of product(AND) terms that are summed(OR)

together. When an expression or term is represented in a sum of binary terms known as minterms

and sum of products.

Definition of SOP

When we add two or multiple product terms by a boolean addition, the output expression
is a sum-of-products (SOP). For example, the expression a’bc’ + a’bd’ + a’bc’d shows a
SOP expression. It can also have a single variable term within the expression like a + bc
+a’b. These logical expressions are simplified in a way that they must not contain
redundant information while creating the minimal version of it.

Domain of a boolean expression

The group of variables, either complimented or uncomplimented, comprised in a boolean
expression, is known as the domain. Let’s suppose, we have an expression a’b + ab’c then
the domain of this expression would be the set of the variables a, b, c.

Implementation of the SOP form

It is mainly implemented by an AND-OR logic where the product of the variables are first
produced by AND gate and then added by the OR gates. For example, the expression
“ab’+bcd+ac” can be expressed by the logic circuit shown in figure 1.1 where the output P
of the OR gate is the SOP expression.

Steps for converting the product term into standard SOP

Here the standard SOP or canonical SOP refers to an expression in which all the variables of
the domain are present. For generating, standard SOP from the product term the boolean rule
“A+A’=1” (the output is ‘1’ when a variable added to its complement) is used and below
given steps are followed.

 Each non-standard term is multiplied by a term constructed by the addition of the
absent variable and its complement. This produces two product terms, as we know that
anything can be multiplied by ‘1’ without changing its value.

 Repeat the step ‘1’ until all the domain variables are present in the expression R.

Example

The term ab’c+a’b’+abc’d converted into the standard SOP or canonical SOP by
multiplying the part of the term by the missing term. Such as a’b’ is multiplied with the c+c’.

Similarly, the whole expression is converted in its canonical form by the following given
steps.

Now there are various terms which are used while generating the reduced logic function such
as minterm, maxterm, k-map (Karnaugh Map), which we will elucidate further in the article.

Minterm

In these terms, the input variables making up a boolean expression is the dot product of each
other, and it is also known as minterm or product term. Mn following table presents the
minterms of the variables.

SOP expression from a Truth table

Suppose, we have a truth table (as shown in figure 1.3) in which each term of the input
variables are written as the product of all the terms. To determine the input combinations that

exist, we need to select the output having value 1 and convert the binary into relevant
product term. Here, we will consider ‘0’ as the variable and ‘1’ as the compliment of the
variable.

Y(A,B,C,D) = ∑m (0,2,3,6,7)
Only those product terms are selected where the output value is 1.
Y = m0+m2+m3+m6+m7

So, in accordance with the truth table, the boolean function (Canonical SOP form) in the
minterm is :
Y = A’B’C’+A’BC’+A’BC+ABC’+ABC
0 is variable and 1 is the complement of the variable.

What is POS?

 POS stands for product of sum. A technique of explaining a Boolean expression through a set of

max terms or sum terms, is known as POS(product of sum).

Definition of POS

POS (Product of Sums) is the representation of the boolean function in which the variables
are first summed, and then the boolean product is applied in the sum terms. For example,
(a’+b).(a+b’+c) is POS expression where we can see that the variables are added then each
bigger term is the product of the other.

Implementation of the POS form

It just needs the variables to be inserted as the inputs to the OR gate. The terms generated by
the OR gates are inserted in the AND gate. The sum term is formed by an OR operation, and
product of two or multiple sum terms is created by an AND operation. To understand the
POS implementation refer the below given figure 2.1 of the expression (a+b).(b+c+d).(a+c).

Steps for converting the product term into standard POS

Similar to the previous explanation, the standard or canonical POS is in which sum terms
does not include all of the variables in the domain of the expression. Here, also we use the
boolean algebra rule 8 “A.A’=0” (a variable multiplied by its complement is 0) to convert a
term in a standard form, and the method is given below.

 In the very first step, each non-standard term added with a term comprised of the
product of the absent variable and its complement. This will produce two sum term, and
‘0’ can be added to any term without changing its value.

 Then, rule 12 (i.e.A+BC=(A+B)(A+C)) is applied to the terms.
 The first two steps are redone again and again until all the sum terms involve all the

variables present in the domain either in the complemented and uncomplemented form.

Example

The term (a+b’+c)(b’+c+d’)(a+b’+c’+d) is translated into the standard POS or canonical

POS by adding each term with the missing term (which is a product of its complement). Such
as “a+b’+c” is summed with the d.d’. In this way, the entire expression is converted in its
canonical form by the following given steps.

Maxterm

These are the terms in which the input variables are present in summation form, alternately
called as sum term. The below-given table represents the Mn, maxterms of the variables.

POS expression from a Truth table

To find the POS expression with the help of a truth table (figure 2.3), record the binary
values having the output 0. Translate each binary value to the related sum term where each
value ‘1’ is substituted with the corresponding variable complement and each 0 is with the

corresponding variable.

Y(A,B,C,D) = ∏m (1,4,5)
Only those sum terms are selected where the output value is 0.
Y = m1+m4+m5

So, in accordance with the truth table, the boolean function (Canonical POS form) in the
maxterm is :
Y = (A+B+C’).(A’+B+C).(A’+B+C’)
1 is variable and 0 is the complement of the variable.

Key Differences Between SOP and POS

1. SOP (Sum of product) generates expression in which all the variables in a domain are
first multiplied then added. On the contrary, the POS (Product of Sum) represents the
boolean expression having variables summed then multiplied with each other.

2. Minterms or product terms are mainly used in the SOP which associates with the high
(1) value. Conversely, in POS, Maxterms or sum terms are employed, which produces a
low (0) value.

3. In the SOP, method, the value ‘1’ is replaced by the variable and ‘0’ by its complement.

In contrast, when it comes to POS a ‘0’ is substituted by the variable and ‘1’ by its

complement.

4. At last, all the terms are added with each other in case of SOP. As against, in POS, the
terms are multiplied with each other in the last step of the process.

Karnaugh Map (K-map) :

It is quite similar to a truth table where we have various probable values of the input
variables and the outcome for each value. A karnaugh map provides an organized way for
simplifying boolean expressions and helps in constructing the simplest minimized SOP and
POS expression.

Conclusion

The SOP and POS, both forms are used for representing the expressions and also holds equal
importance. In an effort for finding whether your reduced boolean expression is correct or
not for designing the logical circuit, one can compare the SOP and POS form of expression
and check whether they are equivalent or not. Additionally, for any binary value, the
resultant of SOP and POS are either be both 1 or 0 based on the binary value.

 Difference between SOP and POS in Digital Logic

S.No. SOP POS

1 SOP stands for Sum of Products. POS stands for Product of Sums.

2 It is a technique of defining the boolean terms as the sum
of product terms.

It is a technique of defining boolean terms as a
product of sum terms.

3 It prefers minterms. It prefers maxterms.

4 In the case of SOP, the minterms are defined as ‘m’. In the case of POS, the Maxterms are defined as ‘M’

5 It gives HIGH(1) output. It gives LOW(0) output.

6 In SOP, we can get the final term by adding the product
terms.

In POS, we can get the final term by multiplying the
sum terms.

 Unit No 2
 Computer Architecture

What is a Number System?

1. A number system is a writing system used to express numbers.

2. It is a set of rules or symbols for representing quantities and performing

arithmetic operations.

3. A number system ornumeral system is defined as an elementary system to
express numbers and figures.
It is the unique way of representing of numbers in arithmetic and algebraic
structure.

4. Thus, in simple words, the writing system for denoting numbers using
digits or symbols in a logical manner is defined as a Number system.

Types of Number Systems
Based on the base value and the number of allowed digits, number systems
are of many types. The four common types of Number systems are:

 Decimal Number System

 Binary Number System

 Octal Number System

 Hexadecimal Number System

 1.Decimal Number System
A number system with a base value of 10 is termed a Decimal number

system. It uses 10 digits i.e. 0-9 for the creation of numbers. Here, each digit in
the number is at a specific place with a place value of a product of different
powers of 10. Here, the place value is termed from right to left as the first
place value called units, second to the left as Tens, so on Hundreds,
Thousands, etc. Here, units have a place value of 100, tens have a place value
of 101, hundreds as 102, thousands as 103, and so on.

https://www.geeksforgeeks.org/number-system-in-maths/

2.Binary Number System

A number System with a base value of 2 is termed a Binary number
system. It uses 2 digits i.e. 0 and 1 for the creation of numbers. The numbers
formed using these two digits are termed Binary Numbers. The binary number
system is very useful in electronic devices and computer systems because it
can be easily performed using just two states ON and OFF i.e. 0 and 1.

Decimal Numbers 0-9 are represented in binary as 0, 1, 10, 11, 100, 101, 110,
111, 1000, and 1001.

3.Octal Numbering System-
 The octal number system is a base-8 system using digits 0-7, where each
position represents a power of 8. It is commonly used in computing for easy
conversion to binary.
'OCTAL' is derived from the Latin word 'OCT' which means Eight. The number
system with base 8 and symbols ranging between 0-7 is known as the Octal
Number System. Each digit of an octal number represents a power of 8.
It is widely used in computer programming and digital systems. Octal number
system can be converted to other number systems and visa versa.

For example, an octal number (10)8 is equivalent to 8 in the decimal number system, 001000
in the binary number system and 8 in the hexadecimal number system.

Octal Numbers System Table

We use only 3 bits to represent Octal Numbers. Each group will have a distinct value

between 000 and 111.

Octal Digital Value Binary Equivalent

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

4.Hexadecimal Number System-
The hexadecimal number system is a type of number system, that has a base value

equal to 16. It is also pronounced sometimes as ‘hex’. Hexadecimal numbers are

represented by only 16 symbols. These symbols or values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E and F. Each digit represents a decimal value. For example, D is equal to

base-10 13.

Hexadecimal number systems can be converted to other number systems such

as binary number (base-2), octal number (base-8) and decimal number systems (base-

10).

The list of 16 hexadecimal digits with their equivalent decimal, octal and binary

representation is given here in the form of a table, which will help in number system

conversion. This list can be used as a translator or converter also.

Hexadecimal Number System Table

Below is the table of hexadecimal number systems with equivalent values of the

binary and decimal number systems.

Decimal Numbers 4-bit Binary Number Hexadecimal Number

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

Why Different Systems?
Binary is useful for digital computing because it directly corresponds to the
on/off states of electrical circuits.
Decimal is used because it aligns with human's natural counting system.
Hexadecimal is used for compactly representing binary data.

The conversion of one base number to another base number considering all the base

numbers such as decimal, binary, octal and hexadecimal with the help of examples.

Here, the following number system conversion methods are explained.

 Binary to Decimal Number System

 Decimal to Binary Number System

 Octal to Binary Number System

 Binary to Octal Number System

 Binary to Hexadecimal Number System

 Hexadecimal to Binary Number System

The general representations of number systems are;

Decimal Number – Base 10 – N10

Binary Number – Base 2 – N2

Octal Number – Base 8 – N8

Hexadecimal Number – Base 16 – N16

Number System Conversion Table

14 1110 E

15 1111 F

Binary Numbers
Octal Numbers Decimal Numbers Hexadecimal Numbers

0000 0 0 0

How to Convert Decimal Numbers to Binary
Numbers?

We can convert the given decimal to binary using different methods such as formula,

division method, and so on. In the section, you will learn how to convert decimal

numbers to binary in the division method. To convert decimal to binary numbers,

proceed with the steps given below:

Step 1: Divide the given decimal number by “2” where it gives the result along with

the remainder.

Step 2: If the given decimal number is even, then the result will be whole and it gives

the remainder “0”

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

Step 3: If the given decimal number is odd, then the result is not divided properly and

it gives the remainder “1”.

Step 4: By placing all the remainders in order in such a way, the Least Significant Bit

(LSB) at the top and Most Significant Bit (MSB) at the bottom, the required binary

number will be obtained.

Now, let us convert the given decimal number 294 into a binary number.

Therefore, the binary equivalent for the given decimal number 29410 is 1001001102

29410 =1001001102

Example: Convert the decimal number 1310 to binary.

Solution: We will start dividing the given number (13) repeatedly by 2 until we get
the quotient as 0. We will note the remainders in order.

Divide by 2 Result Remainder Binary Value

294 ÷ 2 147 0 0 (LSB)

147 ÷ 2 73 1 1

73 ÷ 2 36 1 1

36 ÷ 2 18 0 0

18 ÷ 2 9 0 0

9 ÷ 2 4 1 1

4 ÷ 2 2 0 0

2 ÷ 2 1 0 0

1 ÷ 2 0 1 1 (MSB)

Division by 2 Quotient Remainder

13 ÷ 2 6 1 (LSB)

6 ÷ 2 3 0

3 ÷ 2 1 1

1 ÷ 2 0 1 (MSB)

After noting the remainders, we will write them in such a way that the Most
Significant Bit (MSB) of the binary number is written first, followed by the rest.
Therefore, the binary equivalent for the given decimal number 1310 is 11012. This
means that 1310 = 11012.

Decimal to Binary Table

There are different methods of converting numbers from decimal to binary. When we
convert numbers from decimal to binary, the base of the number changes from 10 to
2. It should be noted that all decimal numbers have their equivalent binary numbers.
The following table shows the decimal to binary chart of the first 20 whole numbers.

Decimal Numbers Binary Numbers

https://www.cuemath.com/numbers/whole-numbers/

Decimal Numbers Binary Numbers

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

Decimal Numbers Binary Numbers

17 10001

18 10010

19 10011

20 10100

Decimal to Octal Conversion

To convert a decimal number to an octal number follow these simple steps:
Step 1: Divide the given decimal number by 8.
Step 2: Write down the quotient and remainder obtained.
Step 3: Divide the quotient obtained by 8.
Step 4: Repeat step 2 and step 3 until the quotient becomes 0.
Step 5: Write the obtained remainder in reverse order.

Example: Represent 164(10) as Octal Number.
Solution:

164/8 , Quotient = 20 and Remainder = 4
20/8 , Quotient = 2 and Remainder = 4
2/8 , Quotient = 0 and Remainder = 2
Now, By writing obtained remainders in reverse order we get, 244.
Hence 2448 is octal representation of 16410
The image added below shows binary to octal conversion.

Steps to Convert Decimal to Octal

The steps to convert a decimal number to its equivalent octal number are as
follows:

Step 1: Note down the given decimal number.

Step 2: If the specified decimal number is less than 8, its octal equivalent is
the same number.

Step 1: Note down the given decimal number.

Step 2: If the specified decimal number is less than 8, its octal equivalent is
the same number.

0(10) =08

1(10) =18

2(10) =28

3(10) =38

4(10) =48

5(10) =58

6(10) =68

7(10) =78

Step 3: If the number is greater than 7, divide it by 8.

Step 4: Note the remainder we obtain after division.

Step 5: Steps 3 and 4 should be repeated until the quotient is less than 8.

Step 6: Now, write the remainders in reverse order (bottom to top). The
outcome is the octal number that corresponds to the given decimal number.

Let’s understand the steps with an example.

How to Convert Decimal to Hexadecimal

Step 1: Divide the number by 16. Note down the quotient and remainder.

If the quotient is 0, the remainder is the equivalent hexadecimal number.

If the quotient is not 0, go to step 2.

Step 2: Divide the quotient in step 1 by 16. Again, note down the quotient
and remainder.

If the quotient is 0, write the remainders in reverse order to find the
hexadecimal number.

If the quotient is not 0, repeat the process until we get 0 as a quotient.

(Note that when the remainder is greater than 9, we refer to the decimal to
hexadecimal table mentioned above to write its hexadecimal equivalent.
Replace 10, 11, 12, 13, 14, 15 by A, B, C, D, E, F respectively.)

Example 1: Find the hexadecimal equivalent of (152)10.

Division Quotient Remainder

152÷16 9 8

9÷16 0 9

Write the remainders in reverse order.

(152)10 = (98)16

Example 2: Convert from decimal to hexadecimal: 45010

https://www.splashlearn.com/math-vocabulary/division/quotient
https://www.splashlearn.com/math-vocabulary/division/remainder

Division Quotient Remainder (decimal value) Remainder(Hexadecimal value)

450÷16 28 2 2

28÷16 1 12 C

1÷16 0 1 1

Writing the remainders in the reverse order, we get

45010 = (1C2)16

Example 3: Convert to hexadecimal: 99910

You can also show the division using columns.

99910 = 3E716

How to Convert Binary to Decimal Numbers?

To convert the binary number to a decimal number, we use the multiplication method.

In this conversion process, if a number with base n has to be converted into a number

with base 10, then each digit of the given number is multiplied from the Most

Significant Bit (MSB) to the Least Significant Bit (LSB) with reducing the power of

the base.

Binary to Decimal Conversion Steps

 First, write the given binary number and count the powers of 2 from right to left (powers
starting from 0)

 Now, write each binary digit (right to left) with the corresponding powers of 2 from (right to
left), such that first binary digit (MSB) will be multiplied with the greatest power of 2.

 Add all the products in the above step

 The final answer will be the required decimal number

Let us understand this conversion with the help of an example.

Example of Binary to Decimal Conversion:

Convert the binary number (1101)2 into a decimal number.

Solution:

Given binary number = (1101)2

Now, multiplying each digit from MSB to LSB with reducing the power of the base

number 2.

1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 8 + 4 + 0 + 1

= 13

Solved Examples

Q.1: Convert the binary number 1001 to a decimal number.

Solution: Given, binary number = 10012

Hence, using the binary to decimal conversion formula, we have:

10012 = (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰)

= 8 + 0 + 0 + 1

= (9)₁₀

Q.2: Convert 11010012 into an equivalent decimal number.

Solution: Using binary to decimal conversion method, we get;

(1101001)₂ = (1 × 2⁶) + (1 × 2⁵) + (0 × 2⁴) + (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰)

= 64 + 32 + 0 + 8 + 0 + 0 + 1

= (105)₁₀

Q.3: Convert (11110111)2 into base-10 number system.

Solution: Using binary to decimal conversion method, we get;

(11110111)₂ = (1 × 2⁷) + (1 × 2⁶) + (1 × 2⁵) + (1 × 2⁴) + (0 × 2³) + (1 × 2²) + (1 × 2¹) +

(1 × 2⁰)

= 128 + 64 + 32 + 16 + 0 + 4 + 2 + 1

= (247)₁₀

Thus, the equivalent decimal number for the given binary number (1101)2 is (13)10

Conversion of Binary to Octal

Since binary numbers are used in computers in the form of bits or bytes and octal
numbers are used in electronics, direct conversion from binary to octal is not a
method. There are two kinds of methods that are used in the binary to octal
conversion.

Method 1: Converting Binary to Decimal then from Decimal to Octal

https://www.cuemath.com/numbers/decimals/

Here are the steps that need to be followed for this method.

 Step 1: Identify the binary number
 Step 2: Convert binary to decimal by multiplying each digit by 2n-1 where 'n' is the

position of the digit from the right.
 Step 3: The derived answer is the decimal number for the given binary number
 Step 4: Divide the decimal number by 8
 Step 5: Note the remainder
 Step 6: Continue the above two steps with the quotient till the quotient is zero
 Step 7: Write the remainder in the reverse order
 Step 8: The answer is the required octal number for the binary number

For example: Convert the binary number (1011101)2(1011101)2 to an octal

 number.

Solution: According to method 1, first convert the binary number to decimal number

 (1011101)2(1011101)2 =

(1 x 26) + (0 x 25) + (1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20)

 = 64 + 0 + 16 + 8 + 4 + 0 + 1

 = 93

 (1011101)2(1011101)2 = (93)10

The next step is to convert the decimal number to an octal number by dividing 93 by
8.

93 divided by 8 will give 5 as remainder and 11 as the quotient

11 divided by 8 will give 3 as remainder and 1 as the quotient

1 divided by 8 will give 1 as remainder and 0 as the quotient

Collect the remainders in reverse order we get 1 3 5

Therefore, binary number \((1011101)_{2}\) = \((135)_{8}\)

Example 1: Convert 10101012 to octal

Solution:

https://www.cuemath.com/numbers/remainder/
https://www.cuemath.com/numbers/quotient/

Given binary number is 10101012

First, we convert given binary to decimal

10101012 = (1 * 26) + (0 * 25) + (1 * 24) + (0 * 23) + (1 * 22) + (0 * 21) + (1 * 20)

= 64 + 0 + 16 + 0 + 4 + 0 + 1

= 64 + 21

0101012= 85 (Decimal form)

Now we will convert this decimal to octal form

Therefore, the equivalent octal number is 1258.

Method 2: Converting Binary to Octal by grouping

Here are the steps that need to be followed for this method.

 Step 1: Identify the binary number i.e. the digits should be either 0 or 1 with base
2.

 Step 2: Group all the 0 to 1 in a set of three starting from the right side.
 Step 3: Add 0's to the left if it does not form a group of three. Each group must

have three digits.
 Step 4: Look at the binary to octal conversion table to get the accurate numbers.
 Step 5: Once obtained, that number is the octal number

For example: Convert the binary number (01110101)2(01110101)2 to an octal
number.

Solution: Using the grouping method, set the binary number into three numbers in
each group.

(01110101)2= 001 110 101 = 1 6 5

(01110101)2 = (165)8

So, if you make each group of 3 bit of binary input number, then replace each group of

binary number from its equivalent octal digits. That will be octal number of given number

number. Note that you can add any number of 0’s in leftmost bit (or in most significant bit)

for integer part and add any number of 0’s in rightmost bit (or in least significant bit) for

fraction part for completing the group of 3 bit, this does not change value of input binary

number.

So, these are following steps to convert a binary number into octal number.

 Take binary number

 Divide the binary digits into groups of three (starting from right) for integer part

and start from left for fraction part.

 Convert each group of three binary digits to one octal digit.

This is simple algorithm where you have to grouped binary number and replace their

equivalent octal digit.

Example-1 − Convert binary number 1010111100 into octal number. Since there is no

binary point here and no fractional part. So,

Therefore, Binary to octal is.

= (1010111100)2

= (001 010 111 100)2

= (1 2 7 4)8

= (1274)8

Example-2 Convert binary number 0110 011.1011 into octal number. Since there is binary

point here and fractional part. So,

Therefore, Binary to octal is.= (0110 011.1011)2

= (0 110 011 . 101 1)2

= (110 011 . 101 100)2

= (6 3 . 5 4)8

= (63.54)8

Binary to Hexadecimal

A binary-to-hexadecimal conversion is done to convert a binary number (base 2) to

its equivalent hexadecimal number (base 16). It is done by the given methods.

Direct Method: Using Table
In this method, we directly represent a group of binary digits (of 4 bits) to its

hexadecimal value using the conversion table.

Let us convert (11010)2 into its corresponding hexadecimal number.

Step 1: Grouping 11010 into 4 bits starting from the right, we have (1) and
(1010).
Step 2: Since the first group is not of four bits, we add zeros to the front.
Now, the groups (0001) and (1010) are of four bits.
Step 3: We find their corresponding hexadecimal values using the conversion
table.

By converting each group into its corresponding hexadecimal values, we get

(0001)2 = (1)16 and (1010)2 = (A)16
Step 4: Taking the values based on the order of the groups, we get
(11010)2 = (1A)16

Convert (1111110010001)2 into its equivalent hexadecimal number.

Solution:

(0001) → 1
(1111) → F
(1001) → 9
(0001) → 1

(1111110010001)2 → (1F91)16

What is Octal to Decimal Conversion?

Octal to decimal conversion takes place when we want to know the equivalent of a
number in the number system. The number system is of four types - Binary number
system, Octal number system, Decimal number system, and Hexadecimal number
system. Each number system has its own base numbers that help in identifying which
type of number it is. These base numbers also help in the octal to decimal conversion.
The base number for octal numbers is 8 and the base number for decimal numbers is
10.

Octal Number System

A number system with its base as 8 and uses digits from 0 to 7 is called Octal Number
System. The word octal is used to represent the numbers that have eight as the base.
The octal numbers have many applications and importance such as it is used in
computers and digital numbering systems. In the number system, octal numbers can
be converted to binary numbers, decimal numbers, and to hexadecimal numbers.
Some of the examples of octal numbers are (47)8(47)8, (120)8(120)8. The octal
numbers are represented with a power of 8. For example: (547)8(547)8 = 5 × 82 + 4
× 81 + 7 × 80.

https://www.cuemath.com/numbers/number-systems/
https://www.cuemath.com/numbers/
https://www.cuemath.com/numbers/octal-number-system/
https://www.cuemath.com/numbers/octal-number-system/

Decimal Number System

The number system with its base as 10 and uses ten digits: 0,1,2,3,4,5,6,7,8 and 9 are
called decimal number system. The decimal number system is the system that we
generally use to represent numbers in real life. If any number is represented without
a base, it means that its base is 10. For example: 6510, 68710, 419810 6510, 68710,
419810 are some examples of numbers in the decimal number system.

Steps to Convert Octal to Decimal

As with any other conversion in the number system, octal to decimal conversion is
also done by using its base number. To convert octal to decimal, we need to multiply
the octal digits with the power of 8 starting from the right-hand side and gradually
decreasing to zero to sum up, all the products. Here are the steps to convert a number
from octal to decimal:

 Step 1: Since an octal number only uses digits from 0 to 7, we first arrange the
octal number with the power of 8.

 Step 2: We evaluate all the power of 8 values such as 80 is 1, 81 is 8, etc., and write
down the value of each octal number.

 Step 3: Once the value is obtained, we multiply each number.
 Step 4: Final step is to add the product of all the numbers to obtain the decimal

number.

Let us look at an example, convert (140)8(140)8 into a decimal number.

Step 1: Write 140 with the power of 8. Start from the right-hand side.

1 × 82 + 4 × 81 + 0 × 80

Step 2: Evaluate the power of 8 values for each octal number.

82 = 64, 81 = 8, 80 = 1

Step 3: Multiply each of the power of 8 numbers with the respective numbers.

1 × 64 + 4 × 8 + 0 × 1 = 64 + 32 + 0

Step 4: Add the values to obtain the decimal number.

64 + 32 + 0 = 96.

Therefore, (140)8(140)8 = (96)10(96)10.

https://www.cuemath.com/numbers/decimals/
https://www.cuemath.com/numbers/base/
https://www.cuemath.com/numbers/sum/

Convert Octal to Decimal with Decimal Point

To convert octal to decimal number with a decimal point, we need to follow the same
procedure as did in the previous section. However, the power or the exponents of 8
will vary after the decimal point. Since we are moving towards the right-hand side
with the exponents increasing, the exponents after the decimal point will decrease or
be negative. Let us look at an example.

Convert (246.28)8(246.28)8 into a decimal number. We will follow the same steps
as before.

https://www.cuemath.com/algebra/exponents/

Step 1: Write 140 with the power of 8. Start from the right-hand side. Here, the power
of 8 will be negative after the decimal point.

2 × 82 + 4 × 81 + 6 × 80 + 2 × 8-1 + 8 × 8-2

Step 2: Evaluate the power of 8 values for each octal number.

82 = 64, 81 = 8, 80 = 1, 8-1 = 1/8, 8-2 = 1/82 or 1/64

Step 3: Multiply each of the power of 8 numbers with the respective numbers.

2 × 64 + 4 × 8 + 6 × 1 + 2 × 1/8 + 8 × 1/64 = 128 + 32 + 6 + 0.25 + 0.125

Step 4: Add the values to obtain the decimal number.

128 + 32 + 6 + 0.25 + 0.125 = 166.375.

Therefore, (246.28)8(246.28)8 = (166.375)10(166.375)10.

Octal to Binary

An octal-to-binary conversion is done to convert an octal number (base 8) to
its equivalent binary number (base 2). Here are the methods to convert an
octal number to its binary counterpart.

Direct Method: Using Table

The octal number system has 8 digits from 0 to 7, represented in their
equivalent binary using 3 bits.

Let us convert (363)8 into its binary number.
Step 1: Grouping 363 into individual digits, we have 3, 6, and 3.
Step 2: Now, we find their corresponding binary numbers using the
conversion table.

Octal Number Binary Number

0 000

1 001

https://mathmonks.com/wp-content/uploads/2024/04/Octal-to-Binary.jpg

Octal Number Binary Number

2 010

3 011

4 100

5 101

6 110

7 111

By converting each octal digit of (363)8 to their binary numbers, we get

Octal Value 3 6 3

Binary Value 011 110 011

Here, we observe that each octal digit gives us a 3-bit binary number.
Otherwise, we add zeros to maintain the correct number of digits.

Step 3: Taking the values from the first to last, (363)8 equals (011110011)2 or
(11110011)2.

For Fractional Octal Numbers
Similarly, we convert the fractional octal numbers into their corresponding
binary.

Now, converting (452.01)8 to its equivalent binary, we get
For the Integral Part:
4 → 100, 5 → 101, and 2 → 010

For the Fractional Part:
0 → 000 and 1 → 001

Thus, (452.01)8 = (100101010.000001)2

Convert (53)8 into binary using the conversion table.

Solution:

Grouping 53 into individual digits, we have 5 and 3.
By converting each octal digit of (53)8 to the binary, we get

(5)8 = (101)2

(3)8 = (011)2

Placing the values from the first to last, (53)8 equals (101011)2.

Octal Value 53 Binary Value 101011

Indirect Method: Without Using Table
There is another way by which each digit in any octal number is represented
to its corresponding binary number without using the octal-to-binary
conversion table.

Let us convert an octal number (73)8 into its corresponding binary.
First, we convert 73 into a decimal number and then decimal to binary.

Step 1: Octal to Decimal
While converting (73)8 to its decimal number, we multiply each digit from
the right by the corresponding powers of 8, as shown.

Octal Value 7 3

Decimal Value 7 × 81 3 × 80

Now, on adding the values, we get the decimal number

(7 × 81) + (3 × 80) = 56 + 3 = 59

Step 2: Decimal to Binary
Now, converting (59)10 into its corresponding binary, we get

Thus, (73)8 = (111011)2.

How to convert octal to hexadecimal ?

Using the below two methods, we can convert the octal number system into the
hexadecimal number system.

1. Convert the octal number into binary and then convert the binary into
hexadecimal.

2. Convert the octal number into decimal and then convert the decimal into
hexadecimal.

Let's convert the octal number into the hexadecimal number system.

Octal to Binary to Hexadecimal

Let's convert (56)8 into hexadecimal

Step 1 : Convert (56)8 into Binary

In order to convert the octal number into binary, we need to express every octal
value using 3 binary bits.

Binary equivalent of 5 is (101)2.

Binary equivalent of 6 is (110)2.

= (56)8

= (101) (110)

= (101110)2

Step 2 : Convert (101110)2 into Hexadecimal

In order to convert the binary number into hexadecimal, we need to group every 4
binary bits and calculate the value [From left to right].

(101110)2 in hexadecimal

= (101110)2

= (10)(1110)

= (2) (14)

= (2e) 16

14 equivalent hexadecimal is e.

This method is relatively easy compared to the below method.

Octal to Decimal to Hexadecimal

Step 1: Convert (56)8 into Decimal

= 5*81+6*80

= 40+6

= (46)10

Step 2: Convert (46)10 into hexadecimal
16|46

16|214

= (2e) 16

Conversion from Hex to Decimal

As we know, number systems can be converted from one base to another. Thus, we
can convert hexadecimal numbers to decimal easily. This number system
conversion can be done as explained in the example given below:

Example:

Convert 7CF (hex) to decimal.

Solution:

Given hexadecimal number is 7CF.

In hexadecimal system,

7 = 7

C = 12

F = 15

To convert this into a decimal number system, multiply each digit with the powers
of 16 starting from units place of the number.

7CF = (7 × 162) + (12 × 161) + (15 × 160)

= (7 × 256) + (12 × 16) + (15 × 1)

= 1792 + 192 + 15

= 1999

https://byjus.com/maths/number-system-conversion/
https://byjus.com/maths/number-system-conversion/

Example 1:

Convert (1DA6)16 to decimal.

Solution:

(1DA6)16

Here,

1 = 1

D = 13

A = 10

6 = 6

Thus,

(1DA6)16 = (1 × 163) + (13 × 162) + (10 × 161) + (6 × 160)

= (1 × 4096) + (13 × 256) + (10 × 16) + (6 × 1)

= 4096 + 3328 + 160 + 6

= 7590

Therefore, (1DA6)16 = (7590)10

Example 2:

Convert (E8B)16 to decimal system.

Solution:

(E8B)16

Here,

E = 14

8 = 8

B = 11

Thus,

(E8B) 16 = (14 × 162) + (8 × 161) + (11 × 160)

= (14 × 256) + (8 × 16) + (11 × 1)

= 3584 + 128 + 11

= 3723

Therefore, (E8B) 16 = (3723)10

Convert Hexadecimal to Binary

To convert hexadecimal to a binary number we need to first convert the
hexadecimal number to a decimal number to finally convert it to a binary number.
One of the most important aspects to remember here is every hexadecimal number
will produce 4 binary digits. The hexadecimal to binary conversion can occur in
two methods - First, after the hexadecimal is converted to a decimal number, we
convert the decimal number by using the division process to obtain the binary
number. Second, we can directly use the hexadecimal to decimal to binary
conversion table. Let us look at the steps of both methods.

Method 1: Convert Hexadecimal to Decimal to Binary (without conversion
table)

This method requires both multiplication and division of numbers using the
respective base numbers. The hexadecimal base number is 16, the base number of
a decimal number is 10, and the base of a binary number is 2. Let us look at the
steps:

 Step 1: Write the hexadecimal number and find its equivalent decimal
number.

 Step 2: To find the decimal equivalent, we multiply each digit with 16n-1,
where the digit is in its nth position.

 Step 3: After multiplying the numbers, add the product of those numbers to
obtain the decimal number.

 Step 4: To convert decimal to binary, we divide the decimal number by 2 by
keeping the remainder aside and dividing the quotient by 2 until we arrive at
zero.

 Step 5: Once the quotient is zero, we arrange the remainder from bottom to
top i.e. reverse order to obtain the binary number.

Let us look at an example for a better understanding. Convert hexadecimal (100)16

to binary.

Step 1 + 2: Convert (100)16

to decimal by multiplying each digit with 16n-1. Multiply it

(100)16

= 1 × 16(3-1) + 0 × 16(2-1) + 0 × 16(1-1)

(100)16

= 1 × 162 + 0 × 161 + 0 × 160

Step 3: Multiply the numbers and add the product to obtain the decimal number.

(100)16

= 1 × 256 + 0 × 16 + 0 × 1

(100)16

= 256 + 0 + 0

(100)16

= 256

Therefore, (100)16

= (256)10

Step 4: Convert the decimal number (256)10

to a binary number by dividing the number by 2 until the quotient is zero.

Therefore, (256)10

= (100000000)2

Step 5: Once the binary is obtained, the conversion is done.

Hence, (100)16

= (100000000)2

.

Method 2: Convert Hexadecimal to Decimal to Binary (with conversion table)

This method is a direct procedure by just looking at the conversation table we can
convert hexadecimal to binary. The steps are fairly simple, lets look at them:

 Step 1: Write the hexadecimal
 Step 2: Find the equivalent decimal of each of the digits by looking at the

conversion table.

 Step 2: Once the decimal number is obtained, looking at the same table we
can convert it to a binary.

 Step 3: Combine all the binary numbers together to obtain the final binary
number.

Let us look at an example for a better understanding. Convert hexadecimal

 (E5B) 16 to binary.

Step 1: We have the hexadecimal as (E5B)16

.

Step 2: Looking at the conversion table, find the equivalent of each digit.

E = (14)10

, 5 = (5)10 , B = (11)10

Step 3: Once the decimal of each digit is obtained, looking at the conversion table
convert each decimal number to binary.

(14)10

= (1110)2

(5)10

= (0101)2

(11)10

= (1011)2

Step 4: Combine all the binary numbers together to obtain the final one.

Therefore, (E5B)16

= (111001011011)2

.

Convert Hexadecimal to Binary With Decimal Point

To convert the hexadecimal digit to binary, we use a similar method as used in the
previous section. We use the conversion table to convert hexadecimal to binary.
While converting with the decimal point, we use the same steps but do not take
into consideration the zero placed on the rightmost side since they are called
trailing zeros. Let us look at an example, convert (0.C48)16

to binary.

Step 1: We have the hexadecimal as (0.C48)16

.Step 2: Looking at the conversion table, find the equivalent of each digit. We do
not take the zero into consideration.

C = (12)10

, 4 = (4)10 , 8 = (8)10

Step 3: Once the decimal of each digit is obtained, looking at the conversion table
convert each decimal number to binary.

(12)10

= (1100)2

(4)10

= (0100)2

(8)10

= (1000)2

Step 4: Combine all the binary numbers together to obtain the final one. The zero
before the decimal will be written along with the final binary number.

Therefore, (0.C48)16

= (110001001000)2.

How to convert hexadecimal to octal?

Using the below two methods, we can convert the hexadecimal number system into
the octal number system.

1. Convert the hexadecimal number into binary and then convert the binary into
octal.

2. Convert the hexadecimal number into decimal and then convert the decimal into
octal.

Let's convert the hexadecimal number into the octal number system.

Hexadecimal to Binary to Octal

Let's convert (ff)16 into Octal.

Step 1: Convert (ff)16 into Binary

In order to convert the hexadecimal number into binary, we need to express every
hexadecimal value using 4 binary bits.

Binary equivalent of f is (1111)2

= (ff)16

= (1111)(1111)

= (11111111)2

Step 2 : Convert (11111111)2 into Octal

In order to convert the binary number into octal, we need to group every 3 binary
bits and calculate the value[From left to right].

(11111111)2 in Octal

= (11111111)2

= (11)(111)(111)

= (377)8

Hexadecimal Decimal Octal

Step 1: Convert (ff) 16 into Decimal

f equivalent decimal is 15.

= 15*161+15*160

= 240+15

= (255)10

Step 2 : Convert (255)10 into Octal
8|255

8|31 7

8|37

= (377)8

BCD or Binary Coded Decimal

Binary Coded Decimal, or BCD, is another process for converting decimal
numbers into their binary equivalents.

 It is a form of binary encoding where each digit in a decimal number is

represented in the form of bits.
 This encoding can be done in either 4-bit or 8-bit (usually 4-bit is preferred).
 It is a fast and efficient system that converts the decimal numbers into binary

numbers as compared to the existing binary system.
 These are generally used in digital displays where is the manipulation of data is

quite a task.
 Thus BCD plays an important role here because the manipulation is done

treating each digit as a separate single sub-circuit.
The BCD equivalent of a decimal number is written by replacing each decimal
digit in the integer and fractional parts with its four bit binary equivalent.the BCD
code is more precisely known as 8421 BCD code , with 8,4,2 and 1 representing
the weights of different bits in the four-bit groups, Starting from MSB and
proceeding towards LSB. This feature makes it a weighted code , which means that
each bit in the four bit group representing a given decimal digit has an assigned
weight.
Many decimal values have an infinite place-value representation in binary but have
a finite place-value in binary-coded decimal. For example, 0.2 in binary is
.001100… and in BCD is 0.0010. It avoids fractional errors and is also used in

huge financial calculations.
Consider the following truth table and focus on how are these represented.

https://www.geeksforgeeks.org/decimal-number-system/
https://www.geeksforgeeks.org/binary-number-system/

Truth Table for Binary Coded Decimal

DECIMAL NUMBER BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

In the BCD numbering system, the given decimal number is segregated into
chunks of four bits for each decimal digit within the number. Each decimal digit is
converted into its direct binary form (usually represented in 4-bits).

https://www.geeksforgeeks.org/numbers/

For example:

1. Convert (123)10 in BCD

From the truth table above,
1 -> 0001
2 -> 0010
3 -> 0011
thus, BCD becomes -> 0001 0010 0011

 2. Convert (324)10 in BCD

(324)10 -> 0011 0010 0100 (BCD)

Again from the truth table above,
3 -> 0011
2 -> 0010
4 -> 0100
thus, BCD becomes -> 0011 0010 0100

This is how decimal numbers are converted to their equivalent BCDs.

 It is noticeable that the BCD is nothing more than a binary representation of
each digit of a decimal number.

 It cannot be ignored that the BCD representation of the given decimal number
uses extra bits, which makes it heavy-weighted.

Gray Code
Definition: Gray Code is the minimum-change code category of coding in which,
the two consecutive values changes by only a single bit. More specifically we can
say, it is a binary number system where while moving from one step to the next,
only a single bit shows variation.

This coding technique was invented by Frank Gray, thus it is named so.

It is also termed as reflected binary code or cyclic code. It is an unweighted code,
as here like other number systems, no particular weight is provided to various bit
positions.

Basically, binary code is changed to gray equivalent in order to lessen the
switching operations. As only a single bit is changed at a particular time duration
this leads to a reduction in switching from one bit to another.

Let us have a look at the tabular representation, showing gray value for different
binary values:

Decimal Value Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

A 1010 1111

B 1011 1110

C 1100 1010

D 1101 1011

E 1110 1001

F 1111 1000

Consider decimal value 7 and 8, to understand the switching of bits.

We know in binary, 7 is written as 0111 while 8 is written as 1000. So, we can see
that

Thus we can conclude that in a binary system, all 4 bits are getting changed
simultaneously. Hence we can say multiple bits are changing at the same time.

In gray code, 7 is written as 0100, as against 8 is written as 1100.

So, here we can see that only a single bit i.e., MSB is changing from 0 to 1 rest
other bits are the same.

This shows that in binary coding, multiple bits are changing simultaneously, while
in gray coding only a single bit is getting change at a time to move from one value
to another.

Therefore, we can say switching is easy in gray code than in binary code.

Now, the question arises, how can we achieve, a gray equivalent from a binary
code or vice versa. For this, we will separately discuss the conversion process
using examples.

Binary to Gray Code Conversion

The conversion process from binary code to a gray involves the following steps:

1. Firstly, record the most significant bit or MSB or the leftmost bit of the given
binary data as it is, to have MSB of gray equivalent.

2. Now, proceed towards adding the adjacent bits of the binary data starting from
MSB with its adjacent bit to LSB. While adding, put the summation obtained in
place of next bit and ignoring the carry.

3. Repeat the same process for all the bits in the sequence till LSB.

This is how the binary code is converted into gray equivalent.

 Let us take some examples to understand the above-discussed steps clearly.
(110101)2

Suppose this is the binary value which is to be converted into equivalent gray
value.

As we have discussed while mentioning the steps, that the first bit or MSB of the
gray equivalent will be the same as the MSB of the binary value.

Thus

Now add the two adjacent bits starting from MSB to LSB and writing the result
obtained as the next bit.

We know the addition of binary 1 and 1 will give 0 as the sum and 1 as the carry.
And we have already discussed that the carry bit must be ignored, while the sum
bit achieved will be put as the next bit in the gray value.

Further, repeating the same process,

So, the equivalent gray value for the given binary code is given as

(101111)Gray
 Let us take another example to have a better understanding of the same.

(101011)2
Consider the above given binary value which is to be converted into gray
equivalent.

So, first, we will write the MSB of the binary digit as the MSB for the gray
equivalent.

Thus

Now start adding the adjacent terms of the binary code in order to get the gray
code

Hence the gray code for the above-given binary code will be

(111110)Gray
So, in this way a binary code is converted into gray equivalent.

Let us now understand how gray code is converted into binary code.

Gray to Binary Code Conversion

The steps given below are required to be followed in order to convert a given gray
value into its binary equivalent:

1. Like in case of binary to gray conversion, here also while writing binary code
from gray code, the MSB must remain the same. So, write the leftmost bit of
gray code as the MSB of binary code.

2. Now, add the recently achieved binary digit with the next adjacent gray code
bit. The sum must be written as the next bit of binary equivalent, while the carry
must be neglected.

3. The above-discussed step must be followed for all the bits present in the
sequence.

In this way, a gray code is converted into the binary equivalent.

 Let us proceed towards some examples:
(101011)Gray

So, in the first step, writing the MSB of gray value as the MSB of binary
equivalent.

Now on adding the achieved binary bit and the next adjacent gray bit till the LSB
of the sequence,

(101101)2
 Now have a look at one more example,

(111100)Gray
Again writing the first bit of binary equivalent as the first digit of the gray code

Now on adding the binary code with the gray value, we will get,

Thus the equivalent binary code will be

(101000)2
Applications of Gray Code

 Due to switching of a single bit, error correction can be easily achieved. Thus
used in digital communication schemes such as cable TV etc.

 Also finds applications in shaft encoders, as in this possibility of errors
increases with variation in the number of bits.

In this way binary to gray code and gray to binary code conversion is performed.

What is Excess-3 Code? (Definition and Examples)

The excess-3 code, abbreviated as XS-3, is an important 4-bit code sometimes used
with binary-coded decimal (BCD) numbers. It possesses advantages in certain
arithmetic operations.

The excess-3 code for a decimal number can be obtained in the same manner as
BCD except that 3 is added to each decimal digit before encoding it in binary. For
example, to encode the decimal digit 5 into excess-3 code, we must first add 3 to
obtain 8. The digit 8 is encoded in its equivalent 4-bit binary code 1000. As
another example, let us convert 26 into its excess-3 code representation.

Since no definite weights can be assigned to the four digit positions, excess-3 is
an unweighted code. Excess-3 codes for decimal digits 0 through 9 are given in
Table 44.7. The noteworthy point from the Table 44.6 is that both codes (BCD and
excess-3) use only 10 of the 16 possible 4-bit code groups. The excess-3 codes,
however, does not use the same code groups. For excess-3 codes, the invalid code
groups are 0000, 0001, 0010, 1101, 1110 and 1111.

https://www.electronicsforu.com/
https://www.eeeguide.com/wp-content/uploads/2022/10/Excess-3-Code-01.jpg

The key feature of the excess-3 codes is that it is self-complementing code. It
means that 1’s complement of the coded number yields 9’s complement of the

number itself. For example, excess-3 code of decimal 5 is 1000, its 1’s

complement is 0111, which is excess-3 code for decimal 4, which is 9’s

complement of 5.

It should be noted that the 1’s complement is easily produced with digital logic

circuits by simply inverting each bit. The self-complementing property makes the
excess-3 code useful in some arithmetic operations, because subtraction can be
performed using the 9’s complement method.

Example 1: Encode the decimal number 2345 in BCD and excess-3
codes.

Solution:

Example 2: Encode (1236)10 In excess-3 code.
Solution:

Error Detection

Error is a condition when the receiver’s information does not match the
sender’s. Digital signals suffer from noise during transmission that can introduce
errors in the binary bits traveling from sender to receiver. That means a 0 bit
may change to 1 or a 1 bit may change to 0.

https://www.eeeguide.com/wp-content/uploads/2022/10/Excess-3-Code-03.jpg
https://www.eeeguide.com/wp-content/uploads/2022/10/Excess-3-Code-04.jpg

Data (Implemented either at the Data link layer or Transport Layer of the OSI
Model) may get scrambled by noise or get corrupted whenever a message is
transmitted. To prevent such errors, error-detection codes are added as extra data
to digital messages. This helps in detecting any errors that may have occurred
during message transmission.

Types of Errors

1. Single-Bit Error
A single-bit error refers to a type of data transmission error that occurs when one
bit (i.e., a single binary digit) of a transmitted data unit is altered during
transmission, resulting in an incorrect or corrupted data unit.

Single-Bit Error

2. Multiple-Bit Error
A multiple-bit error is an error type that arises when more than one bit in a data
transmission is affected. Although multiple-bit errors are relatively rare when
compared to single-bit errors, they can still occur, particularly in high-noise or
high-interference digital environments.

Multiple-Bit Error

3. Burst Error
When several consecutive bits are flipped mistakenly in digital transmission, it
creates a burst error. This error causes a sequence of consecutive incorrect
values.

Burst Error

Error Correction

When the data is sent from the sender side to the receiver’s side it needs to be

detected and corrected. So an error correction method is used for this purpose.
Following are the two ways through which error correction can be handled:

Types of Error Correction

Here are the types of error correction in computer networks:

1. Backward Error Correction

The receiver detects an error and requests the sender to retransmit the entire data unit.

It is commonly used in applications where data integrity is critical and retransmission

is feasible, such as file transfers.

2. Forward Error Correction (FEC)

The receiver corrects errors on its own using error-correcting codes, without needing

retransmission. It is useful in real-time communications (e.g., video streaming, voice-

over IP) where retransmission is impractical.

Here are the error correction techniques in computer networks:

1. Single-bit Error Detection

A single additional bit can detect errors but cannot correct them.

2. Hamming Code

It was developed by R.W. Hamming, it identifies and corrects single-bit errors by

adding redundant bits.

3. Parity Bits

Parity bits are added to binary data to make the total number of 1s either even or odd.

Even Parity

 If the total number of 1s is even, the parity bit is set to 0.

 If the total number of 1s is odd, the parity bit is set to 1.

Odd Parity

 If the total number of 1s is even, the parity bit is set to 1.

 If the total number of 1s is odd, the parity bit is set to 0.

Comparison of Error Detection and Correction

Here is a detailed comparison of error detection and error correction

Error Detection Error Correction

The purpose of error detection is

to identify the presence of errors

The purpose of error correction is to correct

the errors without retransmission

It is generally more efficient

(lower overhead)

This can introduce higher overhead and

complexity

It is much simpler to implement
It is more complex due to additional coding

Error Detection Error Correction

schemes

It has lower latency (only requires

checking)

It contains higher latency (requires decoding

and correction)

The error detection is used in

networking (e.g., TCP, UDP)

The error correction is used in storage

systems, error-prone environments (e.g., CDs,

DVDs)

Examples of Error detection are

Parity Check, CRC, Checksum

Examples of Error correction are Hamming

Code, Reed-Solomon, Turbo Codes

This cannot fix errors, only

detects them

It is limited to specific types and numbers of

errors

It ensures data integrity during

transmission
It ensures reliable data retrieval and storage

Advantages and Disadvantages of Error

Detection and Error Correction

Here are the advantages and disadvantages of error detection and correction in

computer networks:

Advantages of Error Detection

Here are the advantages of error detection in computer networks:

 Easier to implement with lower computational requirements.

 Faster processing since it only checks for errors rather than correcting them.

 Generally requires less additional data compared to error correction methods.

 Can identify errors quickly during data transmission.

Disadvantages of Error Detection

Here are the disadvantages of error detection in computer networks:

 Only detects errors but does not fix them, necessitating retransmission.

 May fail to detect certain types of errors, especially if multiple errors occur.

 Relies on the assumption that retransmission will resolve issues.

Advantages of Error Correction

Here are the advantages of error correction in computer networks:

 Can correct errors to improve data integrity and reliability.

 Reduces the need for retransmission, which is beneficial in bandwidth-limited

environments.

 Provides a higher level of error resilience, especially in noisy environments.

Disadvantages of Error Correction

Here are the disadvantages of error correction in computer networks:

 More complex to implement, requiring advanced algorithms and coding

schemes.

 Involves additional bits for correction, which can increase the overall data size.

 Increased processing time due to the need for decoding and correcting errors.

 Can only correct a predetermined number of errors, beyond which data

integrity may be compromised.

Unit No 3

Combinational Circuits

Combinational Logic Circuits are built up of basic logic NAND, NOR or NOT gates that are
linked or connected to compose more complicated switching circuits. These logic gates signify
the building blocks of combinational logic circuits. Examples of combinational logic circuits are
adders, subtractors, decoder, encoder, multiplexer, and demultiplexer.

In the combinational circuits for the X input binary variable, there are Y output variables. In
these circuits for every possible combinational circuit, there is one possible output combination.
So if one of the conditions of its inputs changes state, from 0-1 or 1-0, so too will the resulting
output as combinational logic circuits by default have no memory/feedback loops within their
design.

Addition is one of the most basic operations performed by different electronic devices like
computers, calculators, etc. The electronic circuit that performs the addition of two or more
numbers, more specifically binary numbers, is called as adder. Since, the logic circuits use
binary number system to perform the operations, hence the adder is referred to as binary adder

Depending on the number of bits that the circuit can add, adders (or binary adders) are of two
types −

 Half Adder
 Full Adder

What is a Half-Adder?

A combinational logic circuit which is designed to add two binary digits is called as a half
adder. The half adder provides the output along with a carry value (if any). The half adder
circuit is designed by connecting an EX-OR gate and one AND gate. It has two input terminals
and two output terminals for sum and carry. The block diagram and circuit diagram of a half
adder are shown in Figure-1.

From the logic circuit diagram of half adder, it is clear that A and B are the two input bits, S is
the output sum, and C is the output carry bit.

In the case of a half adder, the output of the EX-OR gate is the sum of two bits and the output of
the AND gate is the carry. Although, the carry obtained in one addition will not be forwarded in
the next addition because of this it is known as half adder.

Construction of Half Adder Circuit:

We have seen the Block Diagram of Half Adder circuit above with two inputs A,B and two
outputs- Sum, Carry Out. We can make this circuit using two basic gates

1. 2-input Exclusive-OR Gate or Ex-OR Gate
2. input AND Gate

2-input Exclusive-OR Gate or Ex-OR Gate

The Ex-OR gate is used to produce the SUM bit and AND Gate produce the carry bit of the same
input A and B.

This is the symbol of two inputs EX-OR gate. A, and B is the two binary input and SUMOUT is the
final output after adding two numbers.

The truth table of EX-OR gate is –

Input A Input B SUM OUT

0 0 0

0 1 1

1 0 1

1 1 0

In the above table we can see the total sum output of the EX-OR gate. When any one of the
bits A and B is 1 the output of the gate becomes 1. On the two other cases when both inputs
are 0 or 1 the Ex-OR gate produce 0 outputs.

2-input AND Gate:

X-OR gate only provides the sum and unable to provide carry bit on 1 + 1, we need another gate for
Carry. AND gate is perfectly fits in this application.

This is the basic circuit of two input AND gate. Same as like EX-OR gate it has two inputs. If we
provide A and B bit in the input it will produce an Output.

The output is depends on the AND gate truth table-

Input A Input B Carry Output

0 0 0

0 1 0

1 0 0

1 1 1

In the above, the truth table of AND gate is shown where it will only produce the output when both
inputs are 1, Otherwise it will not provide an output if both inputs are 0 or any of the inputs
is 1. Learn more about AND gate here.

Half-Adder logical circuit:
So the Half-Adder logical circuit can be made by combining this two gates and providing the same
input in both gates.

This is the construction of Half-Adder circuit, as we can see two gates are combined and the same
input A and B are provided in both gates and we get the SUM output across EX-OR gate and the
Carry Out bit across AND gate.

The Boolean expression of Half Adder circuit is-

SUM = A XOR B (A+B)

CARRY = A AND B (A.B)

Operation of Half Adder

Half adder adds two binary digits according to the rules of binary addition. These rules are as
follows −

0+0=00+0=0

0+1=10+1=1

1+0=11+0=1

https://circuitdigest.com/electronic-circuits/and-gate-circuit-working

1+1=10(Sum=0&Carry=1)1+1=10(Sum=0&Carry=1)

According to these rules of binary addition, we can see that the first three operations produce a
sum whose length is one digit, whereas in the case of last operation (1 and 1), the sum consists of
two digits. Here, the MSB (most significant bit) of this result is called a carry (which is 1) and
the LSB (least significant bit) is called the sum (which is 0).

Truth Table of Half Adder

Truth table is one that gives the relationship between inputs and outputs of a logic circuit and
explains the operation of the circuit. The following is the truth table of the half-adder −

Inputs Outputs

A B S (Sum) C (Carry)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

K-Map for Half Adder

We can use the K-Map (Karnaugh Map), a method for simplifying Boolean algebra, to determine
equations of the sum bit (S) and the output carry bit (C) of the half adder circuit.

The k-map for half adder circuit is shown in Figure-2.

Characteristic Equations of Half-Adder

The characteristic equations of half adder, i.e., equations of sum (S) and carry (C) are obtained
according to the rules of binary addition. These equations are given below −

The sum (S) of the half-adder is the XOR of A and B. Thus,

Sum,S=A⊕B=AB′+A′BSum,S=A⊕B=AB′+A′B

The carry (C) of the half-adder is the AND of A and B. Therefore,

Carry,C=A⋅BCarry,C=A⋅B

Applications of Half Adder

The following are some important applications of half adder −

 Half adder is used in ALU (Arithmetic Logic Unit) of computer processors to add binary bits.
 Half adder is used to realize full adder circuit.
 Half adder is used in calculators.
 Half adder is used to calculate addresses and tables.
 A Half Adder does not consider any previous carry input, which is why it is called a "half" adder.

To add multiple-bit numbers, a Full Adder is required.

Conclusion

From the above discussion, we can conclude that half adders are one of the basic arithmetic
circuits used in different electronic devices to perform addition of two binary digits. The major
drawback of a half adder is that it cannot add the carry obtained from the addition of the previous
stage. To overcome this drawback, full adders are used in electronic systems.

What is a Full Adder?

A combinational logic circuit that can add two binary digits (bits) and a carry bit, and produces a
sum bit and a carry bit as output is known as a full-adder.

In other words, a combinational circuit which is designed to add three binary digits and produces
two outputs (sum and carry) is known as a full adder. Thus, a full adder circuit adds three binary
digits, where two are the inputs and one is the carry forwarded from the previous addition. The
block diagram and circuit diagram of the full adder are shown in Figure-1.

Hence, the circuit of the full adder consists of one EX-OR gate, three AND gates and one OR
gate, which are connected together as shown in the full adder circuit in Figure-1.

Operation of Full Adder

Full adder takes three inputs namely A, B, and Cin. Where, A and B are the two binary digits, and
Cin is the carry bit from the previous stage of binary addition. The sum output of the full adder is
obtained by XORing the bits A, B, and Cin. While the carry output bit (Cout) is obtained using
AND and OR operations.

Truth Table of Full Adder

Truth table is one that indicates the relationship between input and output variables of a logic
circuit and explains the operation of the logic circuit. The following is the truth table of the full-
adder circuit –

Inputs Outputs

A B Cin S (Sum) Cout (Carry)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Hence, from the truth table, it is clear that the sum output of the full adder is equal to 1 when
only 1 input is equal to 1 or when all the inputs are equal to 1. While the carry output has a carry
of 1 if two or three inputs are equal to 1.

Construction of Half Adder Circuit:

The above block diagram describes the construction of the Full adder circuit. In the above
circuit, there are two half adder circuits that are combined using the OR gate. The first half adder
has two single-bit binary inputs A and B. As we know that, the half adder produces two outputs,
i.e., Sum and Carry. The 'Sum' output of the first adder will be the first input of the second half
adder, and the 'Carry' output of the first adder will be the second input of the second half adder.
The second half adder will again provide 'Sum' and 'Carry'. The final outcome of the Full adder
circuit is the 'Sum' bit. In order to find the final output of the 'Carry', we provide the 'Carry'
output of the first and the second adder into the OR gate. The outcome of the OR gate will be the
final carry out of the full adder circuit.

The MSB is represented by the final 'Carry' bit.

The full adder logic circuit can be constructed using the 'AND' and the 'XOR' gate with an OR
gate.

The actual logic circuit of the full adder is shown in the above diagram. The full adder circuit
construction can also be represented in a Boolean expression.

Sum:

o Perform the XOR operation of input A and B.
o Perform the XOR operation of the outcome with carry. So, the sum is (A XOR B) XOR

Cin which is also represented as:
o (A ⊕ B) ⊕ Cin

Carry:

1. Perform the 'AND' operation of input A and B.
2. Perform the 'XOR' operation of input A and B.
3. Perform the 'OR' operations of both the outputs that come from the previous two steps.

So the 'Carry' can be represented as
A.B + (A ⊕ B)

K-Map for Full Adder

K-Map (Karnaugh Map) is a tool for simplifying binary complex Boolean algebraic expressions.
The K-Map for full adder is shown in Figure-2.

https://circuitdigest.com/electronic-circuits/and-gate-circuit-working
https://circuitdigest.com/electronic-circuits/or-gate-circuit
https://circuitdigest.com/electronic-circuits/or-gate-circuit

Advantages of Full Adder

The following are the important advantages of full adder over half adder −

 Full adder provides facility to add the carry from the previous stage.
 The power consumed by the full adder is relatively less as compared to half adder.
 Full adder can be easily converted into a half subtractor just by adding a NOT gate in the circuit.
 Full adder produces higher output that half adder.
 Full adder is one of the essential part of critic digital circuits like multiplexers.
 Full adder performs operation at higher speed.

Applications of Full Adder

The following are the important applications of full adder −

 Full adders are used in ALUs (arithmetic logic units) of CPUs of computers.
 Full adders are used in calculators.
 Full adders also help in carrying out multiplication of binary numbers.
 Full adders are also used to realize critic digital circuits like multiplexers.
 Full adders are used to generate memory addresses.
 Full adders are also used in generation of program counterpoints.
 Full adders are also used in GPU (Graphical Processing Unit).

. Half Subtractor:

 It is a combinational logic circuit designed to perform the subtraction of two single bits.
 It contains two inputs (A and B) and produces two outputs (Difference and Borrow-

output).
 Half subtractor is a combinational logic circuit intended to perform the subtraction of

two single bits and generate the output. A subtractor circuit with two input variables as
A and B displays two outputs i.e Difference and Borrow. The block diagram of a Half
subtractor is as shown below:

Truth Table of Half Subtractor:

Logic Diagram of Half Subtractor:

Full Subtractor:
A full subtractor is again a combinational circuit that delivers subtraction of two bits, one is
minuend and the other is subtrahend, taking into account the borrow of the earlier adjacent
lower minuend bit. The block diagram of a full subtractor is as shown below:

 It is a Combinational logic circuit designed to perform subtraction of three single bits.
 It contains three inputs(A, B, B in) and produces two outputs (D, Bout).
 Where, A and B are called Minuend and Subtrahend bits.
 And, Bin -> Borrow-In and Bout -> Borrow-Out

Truth Table of Full Subtractor:

The full subtractor circuit includes three input variables and two output variables. The three
inputs; Consider as A, B and Bin. The two outputs, D and Bout, outline the difference and
output borrow, respectively. The full subtractor truth table is as shown:

https://www.geeksforgeeks.org/digital-logic-full-subtractor/

Logic Diagram of Full Subtractor:

Decoder-

Following are the definitions of Decoder in Computer Architecture.

1. In computer architecture, a decoder is a combinational circuit that converts binary-coded
inputs into a specific output. It takes an n-bit input and activates one of its 2ⁿ output lines,

making it useful for selecting components, memory addressing, or instruction decoding.

2. A decoder in digital electronics is a combinational circuit that converts binary input data into a
unique output signal. Decoders play an essential role in various digital systems, enabling
efficient data management and communication by transforming encoded data into a readable
format. With applications ranging from memory addressing to data routing, decoders are
essential components in modern electronic devices. The combinational circuit that converts
binary information into 2^N output lines is known as a decoder. This binary information is input
through N lines. The output lines represent a 2^N-bit code corresponding to the binary
information.

3. In simple terms, a decoder performs the reverse function of an encoder. Typically, only one
input line is activated at a time for simplicity, and the resulting 2^N-bit output code is equivalent
to the original binary information.

4. The combinational circuit that change the binary information into 2N output lines is known as
Decoders. The binary information is passed in the form of N input lines. The output lines define
the 2N-bit code for the binary information. In simple words, the Decoder performs the reverse
operation of the Encoder. At a time, only one input line is activated for simplicity. The produced
2N-bit output code is equivalent to the binary information.

Key Features of a Decoder

o Converts binary input data into distinct output signals.
o Activates one output line at a time based on the input binary value.
o Supports a range of applications from memory addressing to communication systems.
o Performs the opposite function of an encoder.

General Structure of a Decoder

o Inputs: Decoders typically take binary inputs, and the number of inputs determines the
number of possible outputs.

o Outputs: The outputs represent a decoded signal, and only one output line is activated at
any given time.

o Enable Signal: Many decoders have an enable signal, which ensures that the decoder is
only active when necessary, avoiding unnecessary operation when disabled.

Types of Decoders

There are various types of decoders depending on the number of input and output lines.

The most common types include:

o 2 to 4 Decoder
o 3 to 8 Decoder
o 4 to 16 Decoder

Applications of Decoders

o Memory Addressing: Decoders are used in computers to select specific memory
locations.

o Multiplexing: Decoders help in selecting data from multiple sources.
o Control Units: Used in control circuits to decode instruction signals for proper

operation.

Encoder:

An encoder is a combinational circuit that is designed to perform the inverse operation of the
decoder.

An encoder has “n” number of input lines and “m” number of output lines.

An encoder produces an m-bit binary code corresponding to the digital input number.

The encoder accepts an n-input digital word and converts it into an m-bit another digital word.

The internal combinational circuit of the encoder is designed accordingly.

The block diagram of the encoder is shown in the figure below.

Types of Encoder

The types of encoders that are going to be discussed in this lecture are as follows:

Types Of Encoder

1. Priority Encoder

2. Decimal to BCD Encoder

3. Octal to Binary Encoder

4. Hexadecimal to Binary Encoder

Difference between Encoder and Decoder

Encoder Decoder

Encoder circuit basically converts the
applied information signal into a coded
digital bit stream.

Decoder performs reverse operation and
recovers the original information signal from
the coded bits.

In case of encoder, the applied signal is
the active signal input.

Decoder accepts coded binary data as its
input.

The number of inputs accepted by an
encoder is 2n.

The number of input accepted by decoder is
only n inputs.

Encoder Decoder

The output lines for an encoder is n. The output lines of an decoder is 2n.

The encoder generates coded data bits as
its output.

The decoder generates an active output signal
in response to the coded data bits.

The operation performed is simple. The operation performed is complex.

The encoder circuit is installed at the
transmitting end.

The decoder circuit is installed at the
receiving side.

OR gate is the basic logic element used
in it.

AND gate along with NOT gate is the basic
logic element used in it.

It is used in E-mail, video encoders etc.
It is used in Microprocessors, memory chips
etc.

Applications of Encoder and Decoder

Applications of Encoders
 Encoders change data into a form that can be sent over long distances. They help phones,

computers, and other devices share information across the world by turning messages into
special codes that travel easily.

 In robots and machines, encoders turn physical movement into electrical signals. These
signals tell the robot or machine its exact position, speed, and direction, helping it move
accurately and do its job well.

 Encoders help computers find specific information in their memory quickly. They work like
a librarian, turning a request into a code that points directly to where the information is
stored.

 Encoders in sensors change real-world measurements into digital signals. This helps
measure things like how far something has moved or how fast it’s turning, which is useful
in many machines and devices.

 In keyboards and other input devices, encoders change our actions (like pressing keys) into
a language computers understand. This lets us type, click, and give commands to our
devices easily.

Applications of Decoders
 Decoders change computer code into visible numbers, letters, or pictures. They’re used in

digital clocks, electronic signs, and screens to show information we can read and
understand.

 Decoders in devices like TV boxes or internet routers turn incoming signals back into
pictures, sound, or data. This is how we can watch TV shows or browse websites sent from
far away.

 In computer systems, decoders help find and read the right information from memory.
They’re like a guide that takes a code and uses it to find and bring back the exact data
needed.

 Decoders figure out what different signals mean, like the beeps when you press phone
buttons. They turn these signals into instructions that devices can follow or understand.

Conclusion

The Encoders and decoders are essential in the modern technology. The
Encoders convert information into the machine friendly codes while the decoders
translate these codes back into a usable data. They work behind the scenes in our
phones, computers and many other devices. These tools make it possible for the
humans and machines to communicate effectively and enabling everything from digital
displays to robot control. The encoders and decoders help bridge the gap between the
human understanding and machine processing playing the crucial role in world.

What is Multiplexer?

A digital logic circuit which is capable of accepting several inputs and generating a single output
is known as multiplexer or MUX. Thus, the multiplexer is a type of data selector which takes
many inputs and gives a selected output. In a multiplexer, there are 2n input lines and 1 output
line, where n is the number of select lines.

Therefore, a multiplexer is a combinational circuit which is designed to switch one of the many
input lines to a single output line by the use of a control signal. For this reason, the multiplexer is
also referred to as a many to one circuit. The block diagram of a multiplexer is shown in
Figure-1.

The multiplexer functions as a multi-position switch which is digitally controlled by a control
signal. In case of the multiplexer, the select lines determine that which input signal will get
switched to the output line among the many input signals.

What is Demultiplexer?

A digital combinational circuit which takes one input signal and generates multiple output
signals is known as demultiplexer or DEMUX. As it distributes a single input signal over many
output lines, hence it is also referred to as a type of data distributor.

In a demultiplexer, there is only 1 input line and 2n output lines. Where, n denotes the number of
select lines. Therefore, it can be noted that a demultiplexer reverses the operation of a
multiplexer. The block diagram of a demultiplexer is shown in Figure-2.

Difference between Multiplexer and Demultiplexer

Both multiplexer and demultiplexer are types of combinational digital circuit that are used in several large-scale
digital systems. However, there are many differences between a multiplexer and a demultiplexer, which are
highlighted in the following table –

Difference Multiplexer Demultiplexer

Definition

A multiplexer is a combinational
digital circuit that takes multiple data
inputs and provides only single
output.

A demultiplexer is a combinational
digital circuit that takes single input
and provides multiple outputs.

Abbreviated
name

The abbreviation used to represent
the multiplexer is MUX.

The abbreviation used to represent
the demultiplexer is DEMUX.

Input and output
lines

Multiplexer has 2n input lines and 1
output line. Where, n is the number of
select lines.

Demultiplexer has 1 input line
and 2n output lines. Where, n is the
number of select lines.

Also known as
Multiplexer is also known as a "data
selector".

Demultiplexer is also known as
"data distributor".

Operating
principle

The operating principle of the
multiplexer is "many to one".

The operating principle of a
demultiplexer is "ne to many".

Acts as
Multiplexer acts as a digital multi-
position switch.

Demultiplexer acts as a digital
circuit.

Conversion
technique

A multiplexer performs parallel to
serial conversion.

A demultiplexer performs serial to
parallel conversion.

Function of
control signal

In case of multiplexer, the function of
control signal is to select a specific
input that has to be transmitted at the
output.

In demultiplexer, the function of
control signal is to deliver the
single input signal over the multiple
output lines.

Examples

Examples of some common
multiplexers are −

 8:1 Multiplexer
 16:1 Multiplexer
 32:1 Multiplexer

Some common demultiplexers are −
 1:2 Demultiplexer
 1:4 Demultiplexer
 1:8 Demultiplexer
 1:16 Demultiplexer

Practical
importance

In practice, the multiplexer increases
the efficiency of the communication
system by enabling the data
transmission using a single line.

In practice, the demultiplexer takes
the output of a multiplexer and
convert in its original form at the
receiver end.

Usage in time-
division
multiplexing

A multiplexer is used at the
transmitter end in the time-division
multiplexing (TDM).

The demultiplexer is used at the
receiver end in the time-division
multiplexing.

Applications
The multiplexers are commonly used
in communication systems, telephone
networks, computer memories, etc.

The demultiplexers are used in
communication systems,
reconstruction of parallel data,
ALU, etc.

Both multiplexers and demultiplexers are required in the communication system because of its
bidirectional nature. These two devices perform the exact opposite operations of each other. A
major difference between multiplexer and demultiplexer is based on their input and output lines,
i.e., a multiplexer has many input lines and one output line, whereas a demultiplexer has one
input line and many output lines.

What is a Sequential Circuit?

Digital circuits are classified into two major categories namely, combinational circuits and sequential circuits.

A sequential circuit is a logic circuit that consists of a memory element to store history of past
operation of the circuit. Therefore, the output of a sequential circuit depends on present inputs as
well as past outputs of the circuit.

The block diagram of a typical sequential circuit is shown in the following figure −

Here, it can be seen that a sequential circuit is basically a combination of a combinational circuit
and a memory element. The combinational circuit performs the logical operations specified,
while the memory element records the history of operation of the circuit. This history is then
used to perform various logical operations in future.

The sequential circuits are named so because they use a series of latest and previous inputs to
determine the new output

Main Components of Sequential Circuit

A sequential circuit consists of several different digital components to process and hold
information in the system. Here are some key components of a sequential circuit explained −

Logic Gates

The logic gates like AND, OR, NOT, etc. are used to implement the data processing mechanism
of the sequential circuits. These logic gates are basically interconnected in a specific manner to
implement combinational circuits to perform logical operations on input data.

Memory Element

In sequential circuits, the memory element is another crucial component that holds history of
circuit operation. Generally, flip-flops are used as the memory element in sequential circuits.

In sequential circuits, a feedback path is provided between the output and the input that transfers
information from output end to the memory element and from memory element to the input end.

All these components are interconnected together to design a sequential circuit that can perform
complex operations and store state information in the memory element.

What is Flip-Flops?

A flip-flop in digital electronics is a circuit with two stable states that can be used to store binary
data. The stored data can be changed by applying varying inputs. Flip-flops and latches are
fundamental building blocks of digital electronics systems used in computers, communications,
and many other types of systems. Both are used as data storage elements.

Why is it called Flip Flop?

Its name comes from its ability to “flip” or “flop” between two stable states. By latching a value
and changing it when triggered by a clock signal, flip-flops can store data over time. They are
called flip-flops because they have two stable states and switch between them based on a
triggering event.

A flip-flop is a sequential digital electronic circuit having two stable states that can be used to
store one bit of binary data. Flip-flops are the fundamental building blocks of all memory
devices.

Types of Flip-Flops

 S-R Flip-Flop
 J-K Flip-Flop
 D Flip-Flop
 T Flip-Flop

S-R Flip-Flop

This is the simplest flip-flop circuit. It has a set input (S) and a reset input (R). When in this
circuit when S is set as active, the output Q would be high and the Q' will be low. If R is set to
active then the output Q is low and the Q' is high. Once the outputs are established, the results of
the circuit are maintained until S or R gets changed, or the power is turned off.

Truth Table of S-R Flip-Flop

S R Q State

0 0 0 No Change

0 1 0 Reset

1 0 1 Set

1 1 X

J-K Flip-Flop

Because of the invalid state corresponding to S=R=1 in the SR flip-flop, there is a need of
another flip-flop. The JK flip-flop operates with only positive or negative clock transitions. The
operation of the JK flip-flop is similar to the SR flip-flop. When the input J and K are different
then the output Q takes the value of J at the next clock edge.

When J and K both are low then NO change occurs at the output. If both J and K are high, then at
the clock edge, the output will toggle from one state to the other.

Truth Table of JK Flip-Flop

J

K

Q

State

0 0 0 No Change

0 1 0 Reset

1 0 1 Set

1 1 Toggles Toggle

D Flip-Flop

In a D flip-flop, the output can only be changed at positive or negative clock transitions, and
when the inputs changed at other times, the output will remain unaffected. The D flip-flops are
generally used for shift-registers and counters. The change in output state of D flip-flop depends
upon the active transition of clock. The output (Q) is same as input and changes only at active
transition of clock

Truth Table of D Flip-Flop

D Q

0 0

1 1

T Flip-Flop

A T flip-flop (Toggle Flip-flop) is a simplified version of JK flip-flop. The T flop is obtained by
connecting the J and K inputs together. The flip-flop has one input terminal and clock input.
These flip-flops are said to be T flip-flops because of their ability to toggle the input state.
Toggle flip-flops are mostly used in counters.

Truth Table of T Flip-Flop

T Q(t) Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

Applications of Flip-Flops

 Counters
 Shift Registers
 Storage Registers, etc.

Functional Components and their Interconnections

Functional Components of a Computer

Computer: A computer is a combination of hardware and software resources which integrate
together and provides various functionalities to the user. Hardware are the physical components of a
computer like the processor, memory devices, monitor, keyboard etc. while software is the set of
programs or instructions that are required by the hardware resources to function properly.

There are a few basic components that aids the working-cycle of a computer i.e. the Input-
Process- Output Cycle and these are called as the functional components of a computer. It needs
certain input, processes that input and produces the desired output. The input unit takes the input, the
central processing unit does the processing of data and the output unit produces the output. The
memory unit holds the data and instructions during the processing.

Digital Computer: A digital computer can be defined as a programmable machine which reads
the binary data passed as instructions, processes this binary data, and displays a calculated
digital output. Therefore, Digital computers are those that work on the digital data.

Details of Functional Components of a Digital Computer

The basic functional components or elements of a digital computer system basically have the
hardware and software. The hardware is the physical component/part such as a keyboard, mouse,
monitor, etc. The software is the set of programs and instructions which perform several specific
operations.

Both hardware and software together act as functional components. They help to complete the
functional cycle which consists of input, processing, and output. Let us learn about the different
functional components of a digital computer and their working and interconnections. Let us study
the basic components of a computer.

 1. Input Unit

The input unit basically includes the input devices and its operation is to take the input from the
user. It converts the input data into binary code. As the computer understands only machine
language (binary code).

Some important input devices are:

 Keyboard

 Mouse

 Microphone

 Scanner

 Barcode Reader

 Light Pen

 Joystick etc.

2. Central Processing Unit (CPU)

Once the information is entered into the computer by the input device, the processor
processes it. The CPU is called the brain of the computer because it is the control center of the
computer. It first fetches instructions from memory and then interprets them so as to know
what is to be done. If required, data is fetched from memory or input device. Thereafter CPU
executes or performs the required computation and then either stores the output or displays on
the output device. The CPU has three main components which are responsible for different
functions – Arithmetic Logic Unit (ALU), Control Unit (CU) and Memory registers

This is a really important part of a computer as it performs all the processing parts of the
computer. It processes the data and instructions which the user gives. Moreover, it carries out the
calculations and other such tasks. As it is present on a single small chip, it is also called
a microprocessor. Other names of CPU are Central Processor or Main Processor. It has two
subparts:

1. Arithmetic and Logical Unit

As the name suggests, this unit is responsible for performing arithmetic tasks like addition,
subtraction, multiplication, division moreover, it also makes logical decisions like greater than less
than, etc. And hence the name, the ‘brain’ of the computer.

2. Control Unit

This unit is responsible for looking after all the processing. It organizes and manages the execution
of tasks of the CPU.

The Control unit coordinates and controls the data flow in and out of CPU and also
controls all the operations of ALU, memory registers and also input/output units. It is also
responsible for carrying out all the instructions stored in the program. It decodes the fetched
instruction, interprets it and sends control signals to input/output devices until the required
operation is done properly by ALU and memory.

3. Registers

These are memory areas which the CPU directly uses for processing. So, it’s function is to store

data from input or store data between calculations. In addition, it also stores the output results.

A register is a temporary unit of memory in the CPU. These are used to store the data
which is directly used by the processor. Registers can be of different sizes(16 bit, 32 bit, 64 bit
and so on) and each register inside the CPU has a specific function like storing data, storing an
instruction, storing address of a location in memory etc. The user registers can be used by an
assembly language programmer for storing operands, intermediate results etc. Accumulator
(ACC) is the main register in the ALU and contains one of the operands of an operation to be
performed in the ALU.

3. Memory-

Memory attached to the CPU is used for storage of data and instructions and is called internal
memory.The internal memory is divided into many storage locations, each of which can store
data or instructions. Each memory location is of the same size and has an address. With the
help of the address, the computer can read any memory location easily without having to
search the entire memory. When a program is executed, it’s data is copied to the internal

memory and is stored in the memory till the end of the execution. The internal memory is also
called the Primary memory or Main memory. This memory is also called as RAM, i.e. Random
Access Memory. The time of access of data is independent of its location in memory; therefore
this memory is also called Random Access memory (RAM).

The parts of memory are:

Primary Memory

This is the internal memory that stores the data and instructions of the CPU. It is volatile in nature
(data is lost when the power is disconnected).

The primary memory has two types:

1. RAM (Random Access Memory)

As per the name, data can be accessed randomly and quickly.

https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-of-computers/computer-memory/

2. ROM (Read Only Memory)As per the name, we can only read data and cannot write
(store) to it.

As per the name, data can be accessed randomly and quickly.

Secondary Memory

As we know that the primary memory is volatile therefore, we need some devices to store the data
permanently so we use some external storage devices for this purpose which we name as the
secondary memory. Some examples: CD, DVD, etc.

Output Unit : The output unit consists of output devices that are attached with the computer.
It converts the binary data coming from CPU to human understandable form. The common
output devices are monitor, printer, plotter etc.

Instruction Cycle: Fetch, Decode and Execute Cycle

The CPU executes the instructions regarding a program stored in the memory. There’s one

general rule applied to all these instructions being carried out in the processors. The execution
definition is outlined by a cycle of instructions conducted in the particular execution. This cycle,
better known as the instruction cycle, has three stages – fetch, decode and execute.

What is the Instruction Cycle?
The execution instructions define the instruction cycle. This is the thorough methodology
computer processors use for executing a given instruction. Many times processors can be
compared to combustion engines. Both follow a process continuously being carried out to fetch

the desired outcome. Every processor shows a three-step instruction cycle. These three steps of
the instruction execution cycle are,

1. Fetch:
The processor copies the instruction data captured from the RAM.

2. Decode:
Decoded captured data is transferred to the unit for execution.

3. Execute:
Instruction is finally executed. The result is then registered in the processor or RAMS (memory
address).

First step: Fetch (instruction cycle)
According to the execution instruction definition, the instruction cycle’s first step is to capture or

fetch the instruction. This instruction in the fetch stage is captured from RAM. This memory is
assigned to the processor through various units and registers; they are:

 Program counter:

It works by pointing towards the next memory line, where the next instruction for the processor
is stored.

 Register (memory address): Responsible for copying PC content and sending it to the RAM.
This is done through the CPU’s address pins.

 Register (memory data):

It takes the responsibility of copying the memory address to the internal register.

 Register (instruction):

It has involvement in the last step of the fetch phase. It is where the instruction is written. The
control unit from here copies the content for carrying out the instruction cycle.

How does the control unit work?
As discussed earlier, the control unit plays an important part and is present in a processor. The
tasks that it performs are,

 The control unit is responsible for controlling both internal and external movements of the data
in the processor. Also, it is responsible for controlling the movement of the data in various
subunits involved

 Various units of the capture stage of an instruction cycle are considered part of the hardware.
This hardware is called a control unit or a processor’s front-end

 It is responsible for interpreting various instructions and sending them to the execution units
 Communicate that data for instruction to the various ALUs and execution units at work
 It is the part of the processor that captures and decodes the instruction for execution. Also, it is

responsible for writing results on the registers and even in the respective addresses of the RAM

Second step: Decode (instruction cycle)
There are various instructions, and we can never be sure which instruction belongs to which
execution unit. Decoding sorts this out. A decoder is responsible for taking in the instruction and
decoding it to assign the respective execution unit to complete the execution instruction cycle.

The easiest example of how an instruction works is visualising them as trains that keep
circulating through a complex railway network. The control unit here acts as the station at the
terminal and, therefore, it is held in charge of being the execution unit to solve the given
instruction.

Third step: Execute (instruction cycle)
The last stage of the execute instruction definition is to execute. It involves executing the given
instruction that was fetched at the first stage. No two instructions ever get resolved in the same
manner because their ways of utilising the hardware depend on their functions. There are four
types of instructions that are generally present,

 Bit movement instructions:
This instruction involves the manipulation of the bits’ order. These bits contain the data.

 Arithmetic instructions:

These are the instructions that involve logical as well as mathematical operations. They are most
often solved in arithmetic logical units (ALUs)

 Jump instructions:
The code in this instruction is used recursively because the value for the next program counter is
changed.

 Instructions to memory:
These instructions involve the processor writing as well as reading the information from the
memory of the system.

On completing the cycle, that is, the instruction being executed, a new instruction gets fetched,
and the cycle continues.

Conclusion:

The processor in a computer is responsible for the beginning of the instruction cycle and the
forthcoming steps of the instruction execution cycle. The first step for the processor is to check
the next instruction to run in the program counter.

The program counter now gives the address value for the next instruction in the memory. The
value for instruction is fetched out of this given location within the memory; after being fetched
just according to the execution instruction definition, decoding and executing follow suit.

After this instruction is executed, the processor again turns to the program counter. It gets a new
instruction. This way, the instruction cycle keeps repeating itself unless the instruction for STOP.

Instruction Interrupts in Computer Architecture (Simple Explanation)

An instruction interrupt is when a computer's processor stops what it is doing to handle
something more urgent. Think of it like a teacher pausing a lesson to answer an emergency call.

In computer architecture, an instruction interrupt is an event that temporarily halts the
processor's execution of a program so that it can handle a more urgent task. After addressing the
interrupt, the processor resumes its previous task. Interrupts play a crucial role in multitasking,
error handling, and efficient system performance.

1. What is an Interrupt?

An interrupt is a signal sent to the processor to indicate that an event needs immediate attention.
Instead of continuously checking for events (which wastes processing power), the CPU waits for
an interrupt signal before reacting.

🔹 Example: Imagine a teacher is writing on the board (executing instructions), and a student
raises their hand (interrupt). The teacher stops, listens to the student (handles the interrupt), and
then resumes writing.

Why Do Interrupts Happen?

Interrupts occur when the processor needs to pay attention to something important, like:

1. Hardware Issues (e.g., keyboard input, printer ready, mouse click).
2. Software Requests (e.g., a program asking for more memory).
3. Errors (e.g., divide by zero, illegal operation).

Types of Interrupts

1. Hardware Interrupts – Comes from external devices (e.g., pressing a key on the
keyboard).
Example-
These are triggered by external devices like the keyboard, mouse, or printer.
Example 1: You press a key on the keyboard → CPU stops to process the keystroke.
Example 2: The printer finishes printing → CPU gets an interrupt to send more data.

2. Software Interrupts – Comes from programs (e.g., requesting an OS service).
Example 1: A program requests a system service (e.g., saving a file).
Example 2: The operating system schedules a new task for execution.

3. Exceptions – Comes from errors in execution (e.g., division by zero).
Example 1: A program tries to divide a number by zero (division by zero error).
Example 2: A program accesses memory that it shouldn’t (invalid memory access).

How Does an Interrupt Work? (Step-by-Step Process)

The interrupt handling process involves several key steps:

1. The CPU is executing a program.
2. An interrupt occurs (from hardware, software, or an error).
3. The CPU pauses execution of the current program.
4. The CPU saves its current state (register values, program counter, etc.).
5. The CPU identifies the source of the interrupt.
6. The CPU jumps to the Interrupt Service Routine (ISR), a special program designed to

handle the interrupt.
7. The ISR executes to handle the interrupt (e.g., process a keypress, send data to a printer,

or fix an error).
8. The CPU restores its previous state (loads saved data).
9. The CPU resumes execution of the interrupted program.

Example:

 You type "Hello" on the keyboard.
 Each key press sends an interrupt to the CPU.
 The CPU pauses the current task and calls an interrupt handler to store and display the

letter.
 After displaying the letter, the CPU resumes the previous program.

Benefits of Interrupts

Efficient CPU Usage: The processor doesn't waste time checking for events but reacts when
needed.
Enables Multitasking: The CPU can switch between tasks efficiently.
Handles Errors Quickly: Prevents system crashes by detecting faults.
Improves System Responsiveness: Devices like keyboards and printers get quick responses.

Example Scenario of Interrupt Handling

Scenario: You Press a Key on Your Keyboard

1. The keyboard sends an interrupt signal to the CPU.
2. The CPU pauses the current program (e.g., watching a video).
3. The CPU saves its current state.
4. The CPU jumps to the keyboard interrupt handler.
5. The handler reads the key pressed and processes it.
6. The CPU restores its previous state and resumes video playback.

Conclusion-Interrupts are a key part of modern computer systems, allowing them to efficiently
handle multiple tasks, respond to user input, and prevent crashes. Whether they come from
hardware, software, or errors, interrupts ensure that the system remains fast and responsive.

Interconnection Structures

Interconnection structures are the pathways that allow different components of a computer (like
CPU, memory, and input/output devices) to communicate with each other. These structures are
essential because, without them, the components wouldn't be able to share data or coordinate
tasks.

In a computer system, different components like the CPU (Processor), Memory (RAM,
Cache), and Input/output (I/O) devices need to communicate with each other to perform tasks.
Interconnection structures are the systems that allow this communication to happen efficiently.

There are different ways to connect these components, and the choice of structure affects the
speed, cost, and performance of the system.

There are five main types of interconnection structures:

1. Bus Interconnection
2. Point-to-Point Interconnection

1. Bus Interconnection

A bus is a single communication line (like a shared road) used by multiple components to send
and receive data. It consists of three types of signals:

 Data Bus → Transfers data between CPU, memory, and I/O devices.
 Address Bus → Tells where the data should go (memory address or I/O port).
 Control Bus → Manages signals to control data transfer (e.g., Read/Write).

How It Works

Think of it like a school bus that picks up and drops off students (data) at different stops (CPU,
memory, etc.). Only one student (data) can get on or off at a time.

Advantages:

Simple and low-cost → Fewer wires and circuits needed.
Easy to expand → Can add more devices without major changes.

Disadvantages:

Slow when many devices are connected → Just like a crowded road, data transfer becomes

slower.
Only one device can communicate at a time → Others have to wait their turn.

Where it is used:

 Used in small computers, embedded systems, and general-purpose processors.

2. Point-to-Point Interconnection

In this structure, each component has a dedicated link to another component, similar to a direct
phone call between two people.

How It Works

Instead of using a shared bus, the CPU and memory have a direct connection, ensuring fast and
interference-free communication.

Advantages:

 Fast communication → No waiting like in a bus system.
 No data collision → Since each connection is dedicated.

Disadvantages:

Expensive → More wires and circuits are needed.
Difficult to expand → Adding new components means adding new connections.

Where it is used:

 Found in high-speed processors, high-end graphics cards, and direct memory
connections (like in high-performance gaming PCs and servers).

What are Registers in a Computer?

A register is a small, high-speed storage location inside the CPU (Central Processing Unit). It
temporarily holds data, instructions, or addresses that the CPU needs quick access to while
executing tasks.

Why Do We Need Registers?

 CPU processes data much faster than RAM, so it needs a faster place to store data
temporarily.

 Registers help reduce the time taken to fetch and execute instructions.
 They improve the overall speed and efficiency of the computer.

Types of Registers in a Computer

Registers can be classified into different types based on their function. The main types of
registers are:

1. Accumulator (AC)
2. Program Counter (PC)
3. Instruction Register (IR)

1. Program Counter (PC)

The Program Counter (PC) is a special register in the CPU that keeps track of the next
instruction that needs to be executed.

Key Features of the Program Counter:

Stores the memory address of the next instruction to be fetched and executed.
Automatically increments after each instruction are executed.
 Controls the flow of execution in a program.

How the Program Counter Works (Step by Step):

1. Fetch: The CPU reads the memory address stored in the PC to fetch the next
instruction.

2. Increment: The PC increases by 1 (or by the instruction size) to move to the next
instruction.

3. Execute: The instruction is decoded and executed.
4. Repeat: The process continues, ensuring that the CPU follows the sequence of

instructions in the program.

Example of the Program Counter in Action:

Imagine a to-do list where each task has a number:

Task Number Task Description

1000 Add 5 and 3

1001 Multiply the result by 2

1002 Store the result in memory

 Initially, the PC = 1000, pointing to the first instruction.
 After fetching instruction 1000, the PC increments to 1001.
 The next instruction (1001) is executed, and the PC moves to 1002, and so on.

Advantage: Ensures that instructions are executed in the correct sequence.
Disadvantage: If the PC is modified incorrectly (e.g., due to a programming error), the program
may crash.

2. Accumulator (AC)

The Accumulator is a special-purpose register inside the Arithmetic Logic Unit (ALU) that
stores the results of arithmetic and logical operations.

Key Features of the Accumulator:

Stores temporary results of add, subtract, multiply, divide, and logic operations.
Helps in reducing memory access, making the CPU faster.
Works directly with the ALU to process data.

How the Accumulator Works (Step by Step):

1. Load Data: The CPU loads the first number into the Accumulator.
2. Perform Operation: The ALU performs the operation (e.g., addition, subtraction) using

the value in the Accumulator.
3. Store Result: The final result remains in the Accumulator until the next instruction

moves it elsewhere.

Example of the Accumulator in Action:

Let's say we want to compute:
(5 + 3) × 2

Step Operation Accumulator (AC)

1 Load 5 into AC 5

2 Add 3 to AC 8

3 Multiply AC by 2 16

4 Store the result in memory AC is cleared

Advantage: Speeds up calculations because the CPU does not have to store intermediate results
in memory.
Disadvantage: Can only hold one value at a time, so it must be emptied or overwritten for new
calculations.

3. Instruction Register (IR)

The Instruction Register (IR) is used to store the instruction that is currently being executed
by the CPU.

Key Features of the Instruction Register:

Holds the binary machine code of the current instruction.
The instruction inside the IR is decoded by the CPU to determine what action to take.
Works with the Control Unit to execute instructions correctly.

How the Instruction Register Works (Step by Step):

1. Fetch: The CPU fetches an instruction from memory and places it in the Instruction
Register (IR).

2. Decode: The Control Unit reads the instruction from IR and decodes it (e.g., whether it’s

an addition, subtraction, or data transfer instruction).

3. Execute: The CPU performs the operation as per the decoded instruction.
4. Clear: The instruction is removed from IR after execution, and the next instruction is

fetched.

Example of the Instruction Register in Action:

Suppose a program contains the following assembly code:

LOAD A → Load value from memory into AC
ADD B → Add value of B to AC
STORE C → Store result in memory location C

Step Program Counter (PC) Instruction Register (IR) Action

1 1000 LOAD A Load A into AC

2 1001 ADD B Add B to AC

3 1002 STORE C Store AC into C

Advantage: Ensures the CPU knows exactly which instruction is being processed at a given
moment.
Disadvantage: Can hold only one instruction at a time, so it must be refreshed frequently.

Final Comparison Table

Register Function Example

Program Counter
(PC)

Holds the address of the next
instruction to execute.

If PC = 1000, the CPU will fetch the
instruction stored at address 1000.

Accumulator (AC)
Stores the result of arithmetic
and logic operations.

If CPU adds 5 + 3, the result (8) is stored
in AC.

Instruction
Register (IR)

Holds the currently executing
instruction.

If IR contains "ADD A, B", the CPU adds
values of A and B.

Conclusion

 The Program Counter (PC) ensures that instructions are executed in the correct
sequence.

 The Accumulator (AC) is a temporary storage for mathematical and logical operations.

 The Instruction Register (IR) holds and decodes the current instruction.

Each of these works together inside the CPU to ensure fast and efficient execution of
programs.

Memory Organization in Computers

Memory organization in a computer defines how data is stored, accessed, and managed
efficiently to help the CPU perform operations quickly.

Computers use different types of memory, each with different speeds, sizes, and access
methods. These memory types are organized in a hierarchy, with the fastest memory closest to
the CPU and the slowest memory farthest from it.

Memory Hierarchy (Diagram)

The following diagram shows how different memory types are organized in a hierarchical
structure:

The memory in a computer can be divided into five hierarchies based on the speed as well as use.
The processor can move from one level to another based on its requirements. The five
hierarchies in the memory are registers, cache, main memory, magnetic discs, and magnetic
tapes. The first three hierarchies are volatile memories which mean when there is no power, and

then automatically they lose their stored data. Whereas the last two hierarchies are not volatile
which means they store the data permanently.

A memory element is the set of storage devices which stores the binary data in the type of bits. In
general, the storage of memory can be classified into two categories such as volatile as well as
non- volatile.
The memory hierarchy design in a computer system mainly includes different storage devices.
Most of the computers were inbuilt with extra storage to run more powerfully beyond the main
memory capacity. The following memory hierarchy diagram is a hierarchical pyramid for
computer memory. The designing of the memory hierarchy is divided into two types such as
primary (Internal) memory and secondary (External) memory.

Primary Memory
The primary memory is also known as internal memory, and this is accessible by the processor
straightly. This memory includes main, cache, as well as CPU registers.

Secondary Memory
The secondary memory is also known as external memory, and this is accessible by the processor
through an input/output module. This memory includes an optical disk, magnetic disk, and
magnetic tape.

.Registers (Fastest Memory, Inside CPU)

Definition:
Registers are super-fast, small storage units inside the CPU used to hold temporary data and
instructions during processing.

Characteristics of Registers

Fastest memory type (nanosecond-level speed).
Directly accessed by the CPU.
Stores data for immediate processing.
Very small in size (a few bytes).

Example of Registers in Action:

 Suppose the CPU is calculating 5 + 3:
1. The number 5 is stored in a Register.
2. The number 3 is stored in another Register.
3. The ALU (Arithmetic Logic Unit) performs 5 + 3.
4. The result (8) is stored in the Accumulator Register.

Types of Registers:

Register Function

https://www.elprocus.com/an-overview-of-bio-battery-working-principle-types-applications/
https://www.elprocus.com/different-types-of-memory-modules-used-embedded-system/

Register Function

Program Counter (PC) Holds the address of the next instruction to execute.

Instruction Register (IR) Holds the instruction currently being executed.

Accumulator (AC) Stores intermediate results of calculations.

Advantage: Ultra-fast memory, directly inside the CPU.
Disadvantage: Very limited storage (only a few bytes).

What is Main Memory?

Main Memory (also called Primary Memory or RAM) is the working memory of the
computer where programs and data are stored temporarily while they are being used.

 Key Points:
Main memory is directly accessible by the CPU.
It is faster than secondary storage (HDD/SSD) but slower than Cache.
Data is lost when power is off (Volatile Memory).
It helps in the execution of programs by storing instructions and data temporarily.

Main Memory Diagram

 CPU <----> Cache Memory <----> Main Memory (RAM) <----> Secondary
Storage (HDD/SSD)

How Data Moves in a Computer?

1. The CPU first looks for data in Cache Memory.
2. If the data is not in Cache, it is fetched from Main Memory (RAM).
3. If it’s not in RAM, it is loaded from Secondary Storage (HDD/SSD) into RAM for

faster access.

Types of Main Memory

Main Memory is divided into two types:
1RAM (Random Access Memory) - Read & Write Memory
2ROM (Read-Only Memory) - Permanent Memory

1. RAM (Random Access Memory)

Definition:
RAM is a type of memory that allows the CPU to read and write data quickly. It stores data
temporarily and loses all data when power is turned off.

Characteristics of RAM

Fast access speed (compared to HDD/SSD).
Directly accessible by CPU.
Stores active programs and data for quick execution.
Volatile Memory (data is lost when power is off).

Example of RAM in Action:

 When you open a web browser, the browser program is loaded into RAM.
 When you close the browser, the memory is freed for other tasks.

Types of RAM

Type Description

SRAM (Static RAM) Faster and expensive, used in Cache Memory.

DRAM (Dynamic RAM) Slower and cheaper, used in Main Memory (RAM).

Advantage of RAM: Much faster than SSD/HDD.
Disadvantage of RAM: Data is lost when power is off.

2. ROM (Read-Only Memory)

Definition:
ROM is permanent memory that stores important system instructions like the BIOS (Basic
Input/Output System).

Characteristics of ROM

Non-volatile Memory (data is not lost when power is off).
Stores firmware & boot instructions for the computer.
Read-only (Cannot be modified easily).

 Example of ROM in Action:

 When you turn on a computer, the BIOS (stored in ROM) loads the Operating
System (OS).

Types of ROM

Type Description

PROM (Programmable ROM) Can be programmed once.

EPROM (Erasable Programmable ROM)
Can be erased using UV light and
reprogrammed.

EEPROM (Electrically Erasable
Programmable ROM)

Can be erased electronically and rewritten
multiple times.

 Advantage of ROM: Stores important system data permanently.
 Disadvantage of ROM: Cannot be modified easily.

Differences between RAM & ROM

Feature RAM (Random Access Memory) ROM (Read-Only Memory)

Type
Volatile Memory (Data is lost when power
is off)

Non-Volatile Memory (Data is
permanent)

Usage Stores programs & data for CPU processing
Stores system firmware & boot
instructions

Read/Write Read & Write Read-Only

Speed Fast Slower than RAM

Example Running programs in Windows/Linux BIOS, Firmware in devices

 Main Memory (RAM & ROM) is essential for program execution.
 RAM is fast but volatile, used for temporary data storage.
 ROM is non-volatile, used for permanent system instructions.
 Virtual Memory acts as backup RAM but is much slower.

What is Auxiliary Memory?

Auxiliary Memory (also called Secondary Storage) is a type of permanent memory used to
store data and programs for long-term use. It is not directly accessed by the CPU and is used
when data needs to be retrieved for future use.

Key Points:
Stores data permanently (Non-volatile memory).
Larger storage capacity than RAM or Cache.
Slower than Main Memory (RAM) but much cheaper.
Used for backup and long-term storage.

How it Works?
1 The CPU first checks Cache & RAM for required data.
2 If not found, it fetches data from Auxiliary Memory (HDD/SSD).
3 Once data is in RAM, it can be processed faster by the CPU.

Types of Auxiliary Memory

Auxiliary Memory is divided into the following types:
1 Magnetic Storage (Hard Disk, Magnetic Tape)
2 Optical Storage (CD, DVD, Blu-ray)
3 Flash Storage (SSD, USB Drives, Memory Cards)
4 Cloud Storage (Google Drive, OneDrive, Dropbox)

Magnetic Storage (HDD, Floppy Disks, Magnetic Tapes)

 Definition:
Magnetic storage uses magnetic fields to store data on rotating disks or tapes.

Characteristics of Magnetic Storage

Non-volatile (Data remains even when power is off).
Large storage capacity (up to several TBs).
Cheaper than SSDs and Flash storage.
Slower than RAM but faster than Tertiary storage.

Example:

 Hard Disk Drives (HDDs) are used in desktop computers and laptops.
 Magnetic Tapes are used for data backup in large organizations.

Advantages & Disadvantages:

 Advantage: Cost-effective, large storage.
Disadvantage: Slower than SSDs, mechanical parts can fail.

2. Optical Storage (CD, DVD, Blu-ray)

Definition:
Optical storage uses laser technology to read and write data on discs like CDs, DVDs, and Blu-
ray discs.

Characteristics of Optical Storage

Used for multimedia files, software, and backup.
Portable and cheap compared to hard drives.
Slower than HDDs and SSDs.

Example:

 CDs (Compact Discs) store music and small software (700MB).
 DVDs (Digital Versatile Discs) store movies and large files (4.7GB – 17GB).
 Blue-ray Discs are used for high-definition (HD) movies (25GB – 128GB).

Advantages & Disadvantages:

Advantage: Portable and cheap.
Disadvantage: Limited storage, scratches can damage data.

3. Flash Storage (SSD, USB, Memory Cards)

Definition:
Flash storage uses electronic memory (NAND flash) to store data without moving parts.

Characteristics of Flash Storage

Faster than HDDs (Used in SSDs and USB drives).
More durable because it has no moving parts.
Commonly used in laptops, smart phones, and cameras.

Example:

 Solid State Drives (SSD) are much faster than HDDs and used in modern laptops.
 USB Flash Drives (Pen Drives) are used for portable storage.
 Memory Cards store data in mobile phones and cameras.

Advantages & Disadvantages:

Advantage: High-speed storage, durable, low power consumption.
Disadvantage: More expensive than HDDs.

4. Cloud Storage (Online Backup)

Definition:
Cloud storage is an internet-based storage system where data is stored on remote servers
instead of local devices.

Characteristics of Cloud Storage

Access data from anywhere using the internet.
Data is backed up on multiple servers to prevent loss.
Used for storing large files, backups, and sharing files globally.

Example:

 Google Drive, One Drive, Drop box store personal and business files.
 iCloud & Amazon AWS store photos, videos, and documents.

Advantages & Disadvantages:

Advantage: No need for physical storage, easy sharing.
 Disadvantage: Requires an internet connection, security concerns.

 Auxiliary Memory is used for long-term data storage (HDD, SSD, USB, CD, Cloud).
 It is slower than Main Memory (RAM) but much cheaper and larger in size.
 Cloud Storage is growing, reducing the need for physical storage.
 SSDs are replacing HDDs in modern computers due to their speed.

What is Associative Memory?

Associative memory is a special type of memory that allows data to be accessed based on
content rather than a specific address. It is also known as Content-Addressable Memory
(CAM) because it searches for data by matching content instead of using a memory address like
RAM.

Key Points:
Faster than traditional memory because it searches data by content.
Used in applications where quick searches are required (e.g., cache memory, networking).
More expensive than RAM due to complex design.
Can retrieve multiple values at the same time, unlike traditional memory.

How Associative Memory Works (Simple Explanation)

Traditional Memory (RAM) vs. Associative Memory

 In RAM (Random Access Memory):

 The CPU requests data from a specific address.
 Example: "Get data from address 1010."

 In Associative Memory:

 The CPU provides a key (content), and the memory searches for matching data
automatically.

 Example: "Find the memory block that contains the word 'Password123'."

Analogy:
 Imagine a library with books:

 In RAM, you find a book by its shelf number.
 In Associative Memory, you find a book by its title or content.

Associative Memory Diagram

 | Search Key (Input) |

 |

 | Associative Memory |

 |

 | Matched Data (Output) |

The Search Key is provided → Memory searches automatically → Returns Matched Data

 Applications of Associative Memory

Where is Associative Memory Used?

Application Usage

Cache Memory Stores frequently accessed data for faster CPU access.

Networking (Routers,
Switches)

Used in IP address lookups and routing tables for fast packet
forwarding.

Database Searching Helps in fast searching based on keywords or content.

Artificial Intelligence (AI)
Used in pattern recognition and machine learning for fast data
matching.

Security Systems Used in password matching and biometric verification.

Types of Associative Memory

There are two main types of associative memory:
1Binary Associative Memory
2Multivalued Associative Memory

1. Binary Associative Memory

Stores data as binary values (0s and 1s).
Uses bitwise operations to compare and retrieve data.
Example: Used in high-speed cache memory.

2. Multivalued Associative Memory

 Stores data as multiple values (not just 0s and 1s).
Can store complex data structures like numbers, words, and images.
 Example: Used in AI and database systems for advanced searching.

Advantages & Disadvantages of Associative Memory

Feature Advantage Disadvantage

Speed Very fast search (No need for address-based lookup). More power consumption.

Efficiency Finds multiple matching results at once. Expensive hardware.

Usage Used in high-speed applications (networking, AI). Complex to design.

Associative Memory is a special type of memory that searches for data based on content rather than
memory addresses.
 It is used in high-speed applications like cache memory, networking, and AI systems.
Faster than RAM but more expensive due to its complex design.

What is Cache Memory?

Cache memory is a small, high-speed memory that stores frequently used data so the CPU
can access it quickly. It is faster than RAM and helps the CPU work more efficiently by
reducing the time needed to access data from main memory (RAM).

Key Points:
Stores frequently accessed data temporarily.
Much faster than RAM but smaller in size.
Located closer to the CPU for quick access.
Improves system performance and processing speed.

Why is Cache Memory Needed?

Problem Without Cache Memory

 The CPU is very fast, but RAM is slower.
 Every time the CPU needs data, it must fetch it from RAM, which slows down

processing.

Solution: Using Cache Memory

 Cache memory stores frequently used data so the CPU does not have to fetch it from
RAM.

 This makes processing much faster because cache memory is closer to the CPU and
has a higher speed than RAM.

Cache Memory Diagram

 | CPU |

 ⬆

 | Cache Memory | (Fastest but Smallest)

 ⬆

 | Main Memory (RAM) | (Slower but Larger)

 ⬆

 | Secondary Storage | (Slowest, Largest - HDD/SSD)

The CPU first checks the Cache for data.
 If data is not found, it goes to RAM and then to Storage (HDD/SSD).

Levels of Cache Memory (L1, L2, L3)

Cache memory is divided into different levels based on speed and proximity to the CPU:

Level Location Size Speed Function

L1 (Level 1)
Cache

Inside CPU
Smallest (2KB -
64KB)

Fastest
Stores the most
frequently used data

Level Location Size Speed Function

L2 (Level 2)
Cache

Inside/Outside
CPU

Medium
(256KB - 8MB)

Fast Backup for L1 cache

L3 (Level 3)
Cache

Shared by CPU
cores

Largest (4MB -
64MB)

Slower than L1 & L2
but faster than RAM

Stores additional
frequently used data

Example:

 L1 Cache: The closest to the CPU, stores immediate instructions.
 L2 Cache: A backup for L1, holds recently accessed data.
 L3 Cache: Shared among multiple CPU cores for improving multi-core performance.

How Cache Memory Works (Step-by-Step)

1CPU requests data → First checks the cache memory.
2If data is found in cache (Cache Hit) → CPU uses it instantly (Fastest Access).
3If data is NOT found in cache (Cache Miss) → Data is fetched from RAM or Storage
(Slower Access).
4The fetched data is stored in cache for future use.

Cache Hit = Faster Processing ✅
Cache Miss = Slower Processing ❌

Types of Cache Memory

There are two main types of cache memory:

1 Primary Cache (Internal Cache)

 Built inside the CPU.
 Faster but smaller in size.
 Example: L1 and L2 cache.

2 Secondary Cache (External Cache)

 Located near the CPU but not inside.
 Larger but slightly slower than primary cache.
 Example: L3 cache.

 Advantages & Disadvantages of Cache Memory

 Advantages
 Faster processing (Reduces CPU waiting time).

Reduces RAM access, improving performance.
Increases system speed for tasks like gaming, video editing.

 Disadvantages
 ❌ Small storage size (Limited MBs compared to RAM).

❌ Expensive (More costly than RAM).
❌ Complex design (Difficult to manage data storage).

 Cache memory is a high-speed memory that stores frequently accessed data for faster

CPU processing.
It is faster than RAM but smaller in size.
There are 3 levels (L1, L2, L3) used in modern processors.
Used in applications that requires high-speed performance (Gaming, AI, and
Networking).

What is Virtual Memory?

 Virtual Memory is a technique that allows a computer to use part of its hard disk (or
SSD) as extra RAM when the actual RAM is full. It helps run large programs and
multitask smoothly, even when the physical memory (RAM) is limited.

 Key Points:
Expands available memory by using storage (HDD/SSD) as RAM.
Prevents system crashes when RAM is full.
Slower than actual RAM but still helps run large applications.
Used when running multiple programs at once.

Why is Virtual Memory Needed?

 Problem Without Virtual Memory:

 If RAM is fully occupied, the computer cannot load more programs.
 Running multiple applications at once can slow down or crash the system.

 Solution: Using Virtual Memory

 The computer moves less frequently used data from RAM to a special space on the
hard disk (called a page file or swap file).

 This frees up space in RAM for active programs, making the system more efficient.

Virtual Memory Diagram

 | CPU |

 ⬆

 | RAM (Fast Memory) |

 ⬆

 | Virtual Memory (HDD/SSD) | (Slower but provides extra space)

When RAM is full, the system temporarily moves some data to Virtual Memory.
This allows the computer to keep running without crashing or slowing down significantly.

How Virtual Memory Works (Step-by-Step)

1 The CPU stores data in RAM (Fastest memory).
2 When RAM gets full, the operating system (OS) moves some data to Virtual Memory
(HDD/SSD).
3 If that data is needed again, the OS moves it back to RAM.
4 The system keeps switching data between RAM and Virtual Memory to keep multiple
programs running smoothly.

This process is called "Paging."

Advantages & Disadvantages of Virtual Memory

Advantages

Allows larger programs to run even with limited RAM.
 Prevents system crashes when RAM is full.
Enables multitasking (running multiple applications at once).

Disadvantages

Slower than RAM (because HDD/SSD is much slower than RAM).
 Can cause thrashing (system slowdown due to excessive swapping).
Frequent disk usage may shorten HDD/SSD lifespan.

Real-World Example of Virtual Memory

Imagine you are working on a computer with 4GB RAM while running multiple applications:
Google Chrome (1GB)
Microsoft Word (1GB)
Video Editing Software (3GB needed, but RAM is full)

Since RAM is only 4GB, but the system needs 5GB total, Virtual Memory is used.
The least-used data is moved to the Hard Disk (Virtual Memory), so the CPU can continue
working smoothly.

Virtual Memory extends RAM by using Hard Disk (HDD/SSD) space.
Helps run large programs and multitask efficiently.
Slower than RAM but prevents system crashes.
Excessive use can cause "Thrashing," slowing down the computer.

What is Memory Management Hardware?

Memory Management Hardware is the part of the computer system that manages memory
allocation and access. It ensures that each program gets the memory it needs while keeping
different processes from interfering with each other.

Key Functions:
Allocates memory to different programs and processes.
Protects memory so that one process cannot access another’s data.
Handles Virtual Memory by swapping data between RAM and storage.
Improves CPU efficiency by managing memory faster.

Why is Memory Management Hardware Needed?

Problem Without Memory Management Hardware:

 If multiple programs run at the same time, they might overwrite each other's data.
 Without proper memory allocation, some programs may not get enough memory to run.
 CPU cannot work efficiently without organized memory access.

Solution: Using Memory Management Hardware

 The hardware assigns memory to different programs without conflicts.
 It ensures efficient memory usage and prevents errors.

Components of Memory Management Hardware

Memory management hardware includes several key components:

Component Function

Memory Management Unit
(MMU)

Translates logical addresses (used by programs) into physical
addresses (actual memory location).

Base and Limit Registers Protects memory by setting boundaries for each process.

Translation Lookaside
Buffer (TLB)

Speeds up address translation by storing frequently used
mappings.

Page Table
Keeps track of how virtual memory is mapped to physical
memory.

Segment Table
Used in segmentation memory management to store segment
details.

1 Memory Management Unit (MMU)

The Memory Management Unit (MMU) is the most important hardware component for
managing memory. It translates logical addresses (used by programs) into physical addresses
(actual memory locations in RAM).

How MMU Works:

1 A program generates a logical address.
2 The MMU converts it into a physical address.
3 The CPU then accesses the correct location in RAM.

Example:
If a program requests memory at logical address 100, the MMU might translate it to physical
address 5000 in RAM.

 2 Base and Limit Registers

 Base Register: Stores the starting address of a process in RAM.
 Limit Register: Defines the size (boundary) of the process in memory.

Prevents one program from accessing another program's memory.

Example:
If Base = 3000 and Limit = 500, the process can use memory from 3000 to 3500.
If it tries to access memory beyond 3500, the system blocks it to prevent errors.

3 Translation Lookaside Buffer (TLB)

The TLB is a high-speed cache that stores recently used address translations.

 Helps the MMU translate addresses faster.
 Reduces the number of times the CPU has to check the page table.

Speeds up memory access, making the CPU more efficient.

Example:
If a program frequently accesses memory at address 2000, the TLB stores the mapping so the
MMU can quickly retrieve it next time.

4 Page Table

The Page Table keeps track of how virtual memory is mapped to physical memory.

 It divides memory into fixed-sized blocks called pages.
 Helps in paging, a method used in Virtual Memory management.

Prevents processes from interfering with each other.

Example:
A program’s logical address 1000 may be stored in physical address 5000.
The Page Table stores this mapping, so the CPU can find data correctly.

5 Segment Table

 Used in segmentation memory management instead of paging.
 Divides memory into variable-sized segments based on program needs.
 Each segment has a Segment Number, Base Address, and Limit Size.

Example:
Code Segment stores program instructions, Data Segment stores variables, etc.

Working of Memory Management Hardware (Step-by-Step)

1A program requests memory for execution.
2The CPU generates a logical address.
3The MMU translates the logical address into a physical address.
4The Base and Limit Registers check if the access is valid.
5If virtual memory is needed, the Page Table & TLB help map virtual pages to physical
memory.
6The CPU retrieves the data and continues execution.

Real-World Example

Imagine a library system:
🔹 The CPU is the librarian.
🔹 Memory Management Hardware is the library catalog.
🔹 The Page Table is the index that tells where books (data) are stored.
🔹 The MMU translates book IDs (logical addresses) into shelf locations (physical
addresses).
🔹 TLB stores frequently accessed book locations to speed up searching.

🔹 This system ensures efficient book (memory) management and prevents confusion between
different users (processes).

 Advantages & Disadvantages of Memory Management
Hardware

Advantages

 Ensures efficient memory allocation to different processes.
Prevents memory corruption by restricting unauthorized access.

 Improves CPU performance by using fast memory translation techniques.
 Supports Virtual Memory for running large applications.

Disadvantages

Consumes additional system resources (MMU, Page Tables, TLB require space).
Complex address translation may slightly reduce speed if not optimized.
Page Faults & Thrashing can slow down performance if Virtual Memory is overused.

Memory Management Hardware is essential for allocating, protecting, and translating
memory efficiently.
The MMU translates logical to physical addresses.
Base and Limit Registers prevent memory corruption.
Page Table and TLB speed up Virtual Memory access.
Prevents system crashes and ensures smooth program execution.

	What Is a Digital Signal?
	How Does a Digital Signal Work?
	Why Are Digital Signals Important?
	Laws for Boolean algebra
	Disadvantages of K-Map
	Truth Tables for Karnaugh Map (K-Map)
	2 Variable K-Map

	1. Truth Table for 2-Variable K-Map
	Example of 2 Variable K-Map Function F (A, B)
	3 Variable K-Map

	Truth Table for 3-Variable K-Map
	Example of 3 Variable K-Map

	Truth Table for 4-Variable K-Map
	How to Use a Truth Table in K-Map?
	K-Map Simplification

	Steps for K-Map Simplification
	Example: 2-Variable K-Map Simplification
	Step 1: Truth Table
	Step 2: K-Map Representation
	Step 3: Grouping

	Example: 3-Variable K-Map Simplification
	Step 1: Truth Table
	Step 2: K-Map Representation
	Step 3: Grouping

	Example: 4-Variable K-Map Simplification
	Step 1: Truth Table
	Step 2: K-Map Representation
	Step 3: Grouping

	Conclusion
	Don't Care Condition
	Why Do We Use Don't Care Conditions?
	Example 1: Digital Circuit Design (Truth Table)
	Example 2: Karnaugh Map (K-Map) Simplification
	Key Takeaways

	Advantages of Using Don't Care Conditions
	1. simplifies Boolean expressions. 2. Reduces the number of logic gates. 3. Minimizes hardware cost. 4. Enhances performance by reducing delay.
	Real-Life Applications of Don't Care Conditions
	Points-

	 What is SOP?
	Definition of SOP
	Domain of a boolean expression
	Implementation of the SOP form
	Steps for converting the product term into standard SOP
	Example
	Minterm
	SOP expression from a Truth table

	What is POS?
	Definition of POS
	Implementation of the POS form
	Steps for converting the product term into standard POS
	Example
	Maxterm
	POS expression from a Truth table

	Key Differences Between SOP and POS
	Karnaugh Map (K-map) :
	Conclusion
	Difference between SOP and POS in Digital Logic

	Unit No 2
	Computer Architecture
	What is a Number System?
	1. A number system is a writing system used to express numbers.
	2. It is a set of rules or symbols for representing quantities and performing
	arithmetic operations.
	Octal Numbers System Table
	Hexadecimal Number System Table
	Number System Conversion Table
	How to Convert Decimal Numbers to Binary Numbers?
	Decimal to Binary Table
	Decimal to Octal Conversion
	Example: Represent 164(10) as Octal Number.

	Steps to Convert Decimal to Octal
	How to Convert Decimal to Hexadecimal
	How to Convert Binary to Decimal Numbers?
	Binary to Decimal Conversion Steps

	Solved Examples
	Conversion of Binary to Octal
	Binary to Hexadecimal
	Direct Method: Using Table
	What is Octal to Decimal Conversion?
	Octal Number System
	Decimal Number System

	Steps to Convert Octal to Decimal
	Convert Octal to Decimal with Decimal Point

	Octal to Binary
	Direct Method: Using Table
	Indirect Method: Without Using Table

	How to convert octal to hexadecimal ?
	Octal to Binary to Hexadecimal
	Step 1 : Convert (56)8 into Binary
	Step 2 : Convert (101110)2 into Hexadecimal
	(101110)2 in hexadecimal

	Octal to Decimal to Hexadecimal
	Step 1: Convert (56)8 into Decimal
	Step 2: Convert (46)10 into hexadecimal

	Conversion from Hex to Decimal
	Convert Hexadecimal to Binary
	Method 1: Convert Hexadecimal to Decimal to Binary (without conversion table)
	Method 2: Convert Hexadecimal to Decimal to Binary (with conversion table)

	Convert Hexadecimal to Binary With Decimal Point

	How to convert hexadecimal to octal?
	Hexadecimal to Binary to Octal
	Step 1: Convert (ff)16 into Binary
	Step 2 : Convert (11111111)2 into Octal
	(11111111)2 in Octal

	Hexadecimal Decimal Octal
	Step 1: Convert (ff) 16 into Decimal
	Step 2 : Convert (255)10 into Octal

	BCD or Binary Coded Decimal
	Gray Code
	Binary to Gray Code Conversion
	Gray to Binary Code Conversion
	Applications of Gray Code

	What is Excess-3 Code? (Definition and Examples)

	Error Detection
	Types of Errors
	1. Single-Bit Error
	2. Multiple-Bit Error
	3. Burst Error

	Error Correction
	Types of Error Correction
	1. Backward Error Correction
	2. Forward Error Correction (FEC)
	1. Single-bit Error Detection
	2. Hamming Code
	3. Parity Bits

	Comparison of Error Detection and Correction
	Advantages and Disadvantages of Error Detection and Error Correction
	Advantages of Error Detection
	Disadvantages of Error Detection
	Advantages of Error Correction
	Disadvantages of Error Correction

	What is a Half-Adder?
	Construction of Half Adder Circuit:
	Half-Adder logical circuit:

	Operation of Half Adder
	Truth Table of Half Adder
	K-Map for Half Adder
	Characteristic Equations of Half-Adder
	Applications of Half Adder
	Conclusion
	What is a Full Adder?
	Operation of Full Adder
	Truth Table of Full Adder
	Construction of Half Adder Circuit:
	Sum:

	K-Map for Full Adder
	Advantages of Full Adder
	Applications of Full Adder
	General Structure of a Decoder

	Types of Decoders
	Applications of Decoders
	An encoder is a combinational circuit that is designed to perform the inverse operation of the decoder.
	An encoder has “n” number of input lines and “m” number of output lines.
	An encoder produces an m-bit binary code corresponding to the digital input number.
	The block diagram of the encoder is shown in the figure below.
	Types of Encoder
	Difference between Encoder and Decoder
	Applications of Encoder and Decoder
	Applications of Encoders
	Applications of Decoders

	Conclusion (1)
	What is Multiplexer?
	What is Demultiplexer?
	Difference between Multiplexer and Demultiplexer
	What is a Sequential Circuit?
	Digital circuits are classified into two major categories namely, combinational circuits and sequential circuits.
	Main Components of Sequential Circuit
	Logic Gates
	Memory Element

	Types of Flip-Flops
	S-R Flip-Flop
	Truth Table of S-R Flip-Flop

	J-K Flip-Flop
	Truth Table of JK Flip-Flop

	D Flip-Flop
	Truth Table of D Flip-Flop

	T Flip-Flop
	Truth Table of T Flip-Flop

	Applications of Flip-Flops
	Functional Components and their Interconnections
	Functional Components of a Computer
	Computer: A computer is a combination of hardware and software resources which integrate together and provides various functionalities to the user. Hardware are the physical components of a computer like the processor, memory devices, monitor, keyboar...
	There are a few basic components that aids the working-cycle of a computer i.e. the Input- Process- Output Cycle and these are called as the functional components of a computer. It needs certain input, processes that input and produces the desired out...
	Digital Computer: A digital computer can be defined as a programmable machine which reads the binary data passed as instructions, processes this binary data, and displays a calculated digital output. Therefore, Digital computers are those that work on...
	1. Input Unit
	2. Central Processing Unit (CPU)
	Once the information is entered into the computer by the input device, the processor processes it. The CPU is called the brain of the computer because it is the control center of the computer. It first fetches instructions from memory and then interpr...
	3. Memory-
	Memory attached to the CPU is used for storage of data and instructions and is called internal memory.The internal memory is divided into many storage locations, each of which can store data or instructions. Each memory location is of the same size an...
	Primary Memory
	1. RAM (Random Access Memory)

	Secondary Memory

	What is the Instruction Cycle?
	1. Fetch:
	2. Decode:
	3. Execute:

	First step: Fetch (instruction cycle)
	How does the control unit work?
	Second step: Decode (instruction cycle)
	Third step: Execute (instruction cycle)
	 Bit movement instructions:
	 Arithmetic instructions:
	 Jump instructions:
	 Instructions to memory:
	Instruction Interrupts in Computer Architecture (Simple Explanation)

	1. What is an Interrupt?
	Why Do Interrupts Happen?
	Types of Interrupts

	How Does an Interrupt Work? (Step-by-Step Process)
	Benefits of Interrupts
	Example Scenario of Interrupt Handling
	Scenario: You Press a Key on Your Keyboard
	Conclusion-Interrupts are a key part of modern computer systems, allowing them to efficiently handle multiple tasks, respond to user input, and prevent crashes. Whether they come from hardware, software, or errors, interrupts ensure that the system re...

	1. Bus Interconnection
	How It Works
	Advantages:
	Disadvantages:
	Where it is used:

	2. Point-to-Point Interconnection
	How It Works
	Advantages:
	Disadvantages:
	Where it is used:

	What are Registers in a Computer?
	Why Do We Need Registers?

	Types of Registers in a Computer
	1. Program Counter (PC)
	Key Features of the Program Counter:
	How the Program Counter Works (Step by Step):
	Example of the Program Counter in Action:

	2. Accumulator (AC)
	Key Features of the Accumulator:
	How the Accumulator Works (Step by Step):
	Example of the Accumulator in Action:

	3. Instruction Register (IR)
	Key Features of the Instruction Register:
	How the Instruction Register Works (Step by Step):
	Example of the Instruction Register in Action:

	Final Comparison Table
	Conclusion
	Memory Hierarchy (Diagram)
	.Registers (Fastest Memory, Inside CPU)
	Characteristics of Registers

	What is Main Memory?
	Main Memory Diagram
	Types of Main Memory

	1. RAM (Random Access Memory)
	Characteristics of RAM
	Types of RAM

	2. ROM (Read-Only Memory)
	Characteristics of ROM
	Types of ROM
	Differences between RAM & ROM
	What is Auxiliary Memory?
	Types of Auxiliary Memory

	Magnetic Storage (HDD, Floppy Disks, Magnetic Tapes)
	Characteristics of Magnetic Storage

	2. Optical Storage (CD, DVD, Blu-ray)
	Characteristics of Optical Storage

	3. Flash Storage (SSD, USB, Memory Cards)
	Characteristics of Flash Storage

	4. Cloud Storage (Online Backup)
	Characteristics of Cloud Storage
	What is Associative Memory?
	How Associative Memory Works (Simple Explanation)
	Associative Memory Diagram
	Applications of Associative Memory
	Types of Associative Memory
	1. Binary Associative Memory
	2. Multivalued Associative Memory

	Advantages & Disadvantages of Associative Memory
	What is Cache Memory?
	Why is Cache Memory Needed?
	Cache Memory Diagram
	Levels of Cache Memory (L1, L2, L3)
	How Cache Memory Works (Step-by-Step)
	Types of Cache Memory
	1 Primary Cache (Internal Cache)
	2 Secondary Cache (External Cache)

	 Advantages & Disadvantages of Cache Memory
	 Advantages
	 Disadvantages

	What is Virtual Memory?
	Why is Virtual Memory Needed?
	Virtual Memory Diagram
	How Virtual Memory Works (Step-by-Step)
	Advantages & Disadvantages of Virtual Memory
	Advantages
	Disadvantages

	Real-World Example of Virtual Memory
	What is Memory Management Hardware?
	Why is Memory Management Hardware Needed?
	Components of Memory Management Hardware
	1 Memory Management Unit (MMU)
	How MMU Works:

	2 Base and Limit Registers
	3 Translation Lookaside Buffer (TLB)
	4 Page Table
	5 Segment Table
	Working of Memory Management Hardware (Step-by-Step)
	Real-World Example
	Advantages & Disadvantages of Memory Management Hardware
	Advantages
	Ensures efficient memory allocation to different processes. Prevents memory corruption by restricting unauthorized access.
	Improves CPU performance by using fast memory translation techniques. Supports Virtual Memory for running large applications.
	Disadvantages

